38,865 research outputs found
A Distal Model of Congenital Nystagmus as Nonlinear Adaptive Oscillations
Congenital nystagmus (CN) is an incurable pathological spontaneous oscillation of the eyes with an onset in the first few months of life. The pathophysiology of CN is mysterious. There is no consistent neurological abnormality, but the majority of patients have a wide range of unrelated congenital visual abnormalities affecting either the cornea, lens, retina or optic nerve. In this theoretical study, we show that these eye oscillations could develop as an adaptive response to maximize visual contrast with poor foveal function in the infant visuomotor system, at a time of peak neural plasticity. We argue that in a visual system with abnormally poor high spatial frequency sensitivity, image contrast is not only maintained by keeping the image on the fovea (or its remnant) but also by some degree of image motion. Using the calculus of variations, we show that the optimal trade-off between these conflicting goals is to generate oscillatory eye movements with increasing velocity waveforms, as seen in real CN. When we include a stochastic component to the start of each epoch (quick-phase inaccuracy) various observed waveforms (including pseudo-cycloid) emerge as optimal strategies. Using the delay embedding technique, we find a low fractional dimension as reported in real data. We further show that, if a velocity command-based pre-motor circuitry (neural integrator) is harnessed to generate these waveforms, the emergence of a null region is inevitable. We conclude that CN could emerge paradoxically as an ‘optimal’ adaptive response in the infant visual system during an early critical period. This can explain why CN does not emerge later in life and why CN is so refractory to treatment. It also implies that any therapeutic intervention would need to be very early in life
A Developmental Model of Congenital Nystagmus
Purpose: Congenital nystagmus (CN) is a spontaneous oscillation of the eyes with an onset in the first few months of life. In 90% of affected children there is an associated underlying sensory defect (foveal hypoplasia, cone dysfunction, cataracts, etc.). In 10% no underlying visual defect can be found, and the nystagmus is labelled as ‘idiopathic’. CN appears to be a developmental anomaly of sensorimotor integration, as it is not have an onset later in infancy or beyond, but why such a wide variety of early onset visual defects should lead to life-long oscillation of the eyes is a mystery. Previous models have focussed on a systems level approach to explain how CN might be generated by known oculomotor circuits. We ask, instead, why CN might occur.
Model: Our basic tenet is that infant visuomotor development is highly plastic during some early ‘critical’ period. A defect of foveal vision occurring during (and only during) this period leads to an anomalous connectivity in the oculomotor circuitry, which becomes permanent thereafter. We propose that circuitry normally used for precise foveal registration of a visual object (gaze holding, fixation, and smooth pursuit) develops to maintain some degree of image motion, as this would maximise contrast for a low spatial frequency system. However, this motion is in conflict with maintaining the image on the fovea (or its remnant). We explore the best oculomotor strategy to cope with this conflict.
Results: The optimal strategy (in the least squares sense) is to oscillate the eyes in one meridian with alternating slow and quick (saccade) phases. Remarkably, the optimal waveform profile has an increasing-velocity profile. Many of the unique waveforms seen empirically in CN are also optimal strategies given realistic uncertainty in the initial position of a slow phase. Using non-linear dynamical systems analysis, we show that these ‘optimal’ oscillations have similar fractional correlation dimensions to observed data. We also show that a ‘null region’, as commonly observed in CN, would be an inevitable consequence of a velocity driven oculomotor system.
Conclusions: We have developed a new approach to understanding oculomotor development, in which we examine the best strategy to maximise visual contrast. In a normal foveate visual system with fine oculomotor control, the best strategy is to develop good foveal registration, which we call ‘fixation’, and ‘smooth pursuit’. If, however, the fovea is absent or not being stimulated (eg. cataracts), the best strategy would be to develop oscillations of the type seen in CN. It implies that the chaotic oscillations are the result of a physiological developmental adaptive process. This is in contrast to the prevailing view that CN is a disease that can be ‘cured’. It is not surprising that CN has proven remarkably refractory to therapeutic intervention with only minimal (if any) long-term successes using drugs, surgery, or even biofeedback. We argue that CN is as adaptive and permanent as normal eye movements are in a normally sighted individual
Subwavelength fractional Talbot effect in layered heterostructures of composite metamaterials
We demonstrate that under certain conditions, fractional Talbot revivals can
occur in heterostructures of composite metamaterials, such as multilayer
positive and negative index media, metallodielectric stacks, and
one-dimensional dielectric photonic crystals. Most importantly, without using
the paraxial approximation we obtain Talbot images for the feature sizes of
transverse patterns smaller than the illumination wavelength. A general
expression for the Talbot distance in such structures is derived, and the
conditions favorable for observing Talbot effects in layered heterostructures
is discussed.Comment: To be published in Phys. Rev.
Fluctuations of wave functions about their classical average
Quantum-classical correspondence for the average shape of eigenfunctions and
the local spectral density of states are well-known facts. In this paper, the
fluctuations that quantum mechanical wave functions present around the
classical value are discussed. A simple random matrix model leads to a Gaussian
distribution of the amplitudes. We compare this prediction with numerical
calculations in chaotic models of coupled quartic oscillators. The expectation
is broadly confirmed, but deviations due to scars are observed.Comment: 9 pages, 6 figures. Sent to J. Phys.
Post-selected weak measurement beyond the weak value
Closed expressions are derived for the quantum measurement statistics of
pre-and postselected gaussian particle beams. The weakness of the pre-selection
step is shown to compete with the non-orthogonality of post-selection in a
transparent way. The approach is shown to be useful in analyzing
post-selection-based signal amplification, allowing measurements to be extended
far beyond the range of validity of the well-known Aharonov-Albert-Vaidman
limit.Comment: The published version; with respect to previous one, note changes in
Eqs. (16),(17),(19)
A Developmental Model of Infantile Nystagmus
The possibility that infantile nystagmus (IN) may reflect a failure in early sensorimotor integration has been proposed for more than a century, but is only recently being borne out in animal studies. The underlying neural and genetic substrate for this plasticity is complex. We propose that, in most cases, IN develops as a developmental response to reduced contrast sensitivity to high-spatial frequencies in an early "critical period," however caused, whether by structural malformations (e.g. foveal hypoplasia) or poor optics (e.g. cataract). As shown by psychophysics, contrast sensitivity to low spatial frequencies is enhanced by motion of the image across the retina. Based on our previous theoretical study (Harris & Berry, Nonlinear Dynamics, 2006), we argue that the best compromise between moving the image and maintaining the image near the fovea (or its remnant) is to oscillate the eyes with jerk nystagmus with increasing velocity waveforms, as seen empirically. The generation of jerk waveforms relies heavily on the saccadic system, which is immature in infancy. Pendular waveforms may therefore provide an alternative to jerk waveforms, and may explain why they are seen more often in young infants. We discuss the implications of this developmental model for the need to synchronize sensory and motor developments in normal development. Failure of this synchronization may also explain some idiopathic cases
Observation of a Chiral State in a Microwave Cavity
A microwave experiment has been realized to measure the phase difference of
the oscillating electric field at two points inside the cavity. The technique
has been applied to a dissipative resonator which exhibits a singularity --
called exceptional point -- in its eigenvalue and eigenvector spectrum. At the
singularity, two modes coalesce with a phase difference of We
conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure
Spectral Statistics and Dynamical Localization: sharp transition in a generalized Sinai billiard
We consider a Sinai billiard where the usual hard disk scatterer is replaced
by a repulsive potential with close to the
origin. Using periodic orbit theory and numerical evidence we show that its
spectral statistics tends to Poisson statistics for large energies when
, while for
it is independent of energy, but depends on . We apply the approach of
Altshuler and Levitov [Phys. Rep. {\bf 288}, 487 (1997)] to show that the
transition in the spectral statistics is accompanied by a dynamical
localization-delocalization transition. This behaviour is reminiscent of a
metal-insulator transition in disordered electronic systems.Comment: 8 pages, 2 figures, accepted for publication in Phys. Rev. Let
Congenital Nystagmus as Non-Linear Adaptive Oscillations
Congenital Nystagmus (CN) is a pathological involuntary oscillation of the eyes with an onset within the first few months of life, with an incidence of about 1:3000. It is a life-long oculomotor disorder that cannot be explained by any underlying neurological abnormality which might compromise adaptive mechanisms. There is no cure, and CN has so far defied explanation in spite of numerous attempts to model the disorder. In this theoretical study we show that these eye oscillations could develop as an adaptive response to maximise visual contrast with poor foveal function in the infant visuomotor system, at a time of peak neural plasticity. We propose that CN is a normal developmental adaptive response to an abnormal congenital sensory input. This can explain why CN does not emerge later in life and why CN is so refractory to treatment. It also implies that any therapeutic intervention would need to be very early in life
Quantised orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter
Following the very recent experimental realisation of electron vortices, we
consider their interaction with matter, in particular the transfer of orbital
angular momentum in the context of electron energy loss spectroscopy, and the
recently observed dichroism in thin film magnetised iron samples. We show here
that orbital angular momentum exchange does indeed occur between electron
vortices and the internal electronic-type motion, as well as center of mass
motion of atoms in the electric dipole approximation. This contrasts with the
case of optical vortices where such transfer only occurs in transitions
involving multipoles higher than the dipole. The physical basis of the observed
dichroism is explained
- …
