166,197 research outputs found
Pancreatic cystosis in cystic fibrosis. Sometimes a bike ride can help you decide
Pancreatic cystosis (PC) is an uncommon manifestation of pancreas involvement in cystic fibrosis (CF), characterized by the presence of multiple macrocysts partially or completely replacing pancreas. Only few reports are available from literature and management (surgery vs follow up) is commonly based on the presence of symptoms or complications due to local mass effect, although evidence-based recommendations are still not available. We here report the case of a young adult CF patient with PC, in which cardiopulmonary exercise testing (CPET) provided important information to be integrated to the radiological finding of inferior vena cava compression by the multicystic pancreas complex. Through the analysis of oxygen kinetic cardiodynamic phase pattern, CPET may be helpful to safely exclude significant mass effects on blood venous return and to improve the decision-making process on whether to consider surgery or not in patients with PC
High loop renormalization constants for Wilson fermions/Symanzik improved gauge action
We present the current status of our computation of quark bilinear
renormalization constants for Wilson fermions and Symanzik improved gauge
action. Computations are performed in Numerical Stochastic Perturbation Theory.
Volumes range from 10^4 to 32^4. Renormalization conditions are those of the
RI'-MOM scheme, imposed at different values of the physical scale. Having
measurements available at several momenta, irrelevant effects are taken into
account by means of hypercubic symmetric Taylor expansions. Finite volumes
effects are assessed repeating the computations at different lattice sizes. In
this way we can extrapolate our results to the continuum limit, in infinite
volume.Comment: 8 pages, 3 figures, talk presented at the 27th International
Symposium on Lattice Field Theory (Lattice 2009), Beijing, China, 26-31 Jul
200
Effective run-and-tumble dynamics of bacteria baths
{\it E. coli} bacteria swim in straight runs interrupted by sudden
reorientation events called tumbles. The resulting random walks give rise to
density fluctuations that can be derived analytically in the limit of non
interacting particles or equivalently of very low concentrations. However, in
situations of practical interest, the concentration of bacteria is always large
enough to make interactions an important factor. Using molecular dynamics
simulations, we study the dynamic structure factor of a model bacterial bath
for increasing values of densities. We show that it is possible to reproduce
the dynamics of density fluctuations in the system using a free run-and-tumble
model with effective fitting parameters. We discuss the dependence of these
parameters, e.g., the tumbling rate, tumbling time and self-propulsion
velocity, on the density of the bath
The emotional contagion in children with autism spectrum disorder
Studies of the last decade have demonstrated that children with Autism
Spectrum Disorder (ASD) showed difficulties in language, social and relational
areas, but they had also impairment in the mechanisms of embodied simulation,
namely the imitative behaviors that allow the body to give an experiential
meaning to own and other’s emotions. The identification of this specific emotional
response in ASD children, also defined as emotional contagion, allows to move
the therapeutic focus from reducing the behavioral symptomatic expressions of
the child to promoting the expression of his ability of emotional regulation. The
aim of this study was to investigate the presence of emotional contagion in 53
ASD children aged between 22 and 66 months, through the Test of emotional
contagion and verify the presence of compromised emotional contagion areas.
Our findings have shown that the severity of the disorder is closely related to
the inability of the child to respond to the emotional stimuli, regardless from
cognitive abilities, and that emotion to which children responded most frequently
was happiness, while the one who responded less was anger
Run-and-tumble particles in speckle fields
The random energy landscapes developed by speckle fields can be used to
confine and manipulate a large number of micro-particles with a single laser
beam. By means of molecular dynamics simulations, we investigate the static and
dynamic properties of an active suspension of swimming bacteria embedded into
speckle patterns. Looking at the correlation of the density fluctuations and
the equilibrium density profiles, we observe a crossover phenomenon when the
forces exerted by the speckles are equal to the bacteria's propulsion
- …
