14,967 research outputs found
Elementary Particles of Conventional Field Theory as Regge Poles. IV
The usual field theory of spin 0 "nucleons" coupled to vector mesons (or heavy photons) is studied in order to find out whether the nucleon lies on a Regge trajectory. Photon-nucleon scattering is examined, to each order in the coupling constant, with the highest power of ln cosθ retained. It is found that a suitable Regge trajectory is generated, but that the nucleon does not lie on it. The nucleon pole term in the scattering amplitude corresponds to a fixed singularity in angular momentum. The spin 0 "nucleon" thus behaves differently from a particle of spin ½
Have We Observed the Higgs (Imposter)?
We interpret the new particle at the Large Hadron Collider as a CP-even
scalar and investigate its electroweak quantum number. Assuming an unbroken
custodial invariance as suggested by precision electroweak measurements, only
four possibilities are allowed if the scalar decays to pairs of gauge bosons,
as exemplified by a dilaton/radion, a non-dilatonic electroweak singlet scalar,
an electroweak doublet scalar, and electroweak triplet scalars. We show that
current LHC data already strongly disfavor both the dilatonic and non-dilatonic
singlet imposters. On the other hand, a generic Higgs doublet give excellent
fits to the measured event rates of the newly observed scalar resonance, while
the Standard Model Higgs boson gives a slightly worse overall fit due to the
lack signal in the tau tau channel. The triplet imposter exhibits some tension
with the data. The global fit indicates the enhancement in the diphoton channel
could be attributed to an enhanced partial decay width, while the production
rates are consistent with the Standard Model expectations. We emphasize that
more precise measurements of the ratio of event rates in the WW over ZZ
channels, as well as the event rates in b bbar and tau tau channels, are needed
to further distinguish the Higgs doublet from the triplet imposter.Comment: 20 pages, 4 figures; v2: updated with most recent public data as of
August 7. A generic Higgs doublet now gives the best fit to data, while the
triplet imposter exhibits some tensio
The Inability of Ambipolar Diffusion to set a Characteristic Mass Scale in Molecular Clouds
We investigate the question of whether ambipolar diffusion (ion-neutral
drift) determines the smallest length and mass scale on which structure forms
in a turbulent molecular cloud. We simulate magnetized turbulence in a mostly
neutral, uniformly driven, turbulent medium, using a three-dimensional,
two-fluid, magnetohydrodynamics (MHD) code modified from Zeus-MP. We find that
substantial structure persists below the ambipolar diffusion scale because of
the propagation of compressive slow MHD waves at smaller scales. Contrary to
simple scaling arguments, ambipolar diffusion thus does not suppress structure
below its characteristic dissipation scale as would be expected for a classical
diffusive process. We have found this to be true for the magnetic energy,
velocity, and density. Correspondingly, ambipolar diffusion leaves the clump
mass spectrum unchanged. Ambipolar diffusion appears unable to set a
characteristic scale for gravitational collapse and star formation in turbulent
molecular clouds.Comment: 16 pages, 5 figures. ApJ accepte
2,6-Diiodo-4-nitrophenol, 2,6-diiodo-4-nitrophenyl acetate and 2,6-diiodo-4-nitroanisole: interplay of hydrogen bonds, iodo-nitro interactions and aromatic [pi]-[pi]-stacking interactions to give supramolecular structures in one, two and three dimensions
Peer reviewedPublisher PD
Infrared Emission from the Radio Supernebula in NGC 5253: A Proto-Globular Cluster?
Hidden from optical view in the starburst region of the dwarf galaxy NGC 5253
lies an intense radio source with an unusual spectrum which could be
interpreted variously as nebular gas ionized by a young stellar cluster or
nonthermal emission from a radio supernova or an AGN. We have obtained 11.7 and
18.7 micron images of this region at the Keck Telescope and find that it is an
extremely strong mid-infrared emitter. The infrared to radio flux ratio rules
out a supernova and is consistent with an HII region excited by a dense cluster
of young stars. This "super nebula" provides at least 15% of the total
bolometric luminosity of the galaxy. Its excitation requires 10^5-10^6 stars,
giving it the total mass and size (1-2 pc diameter) of a globular cluster.
However, its high obscuration, small size, and high gas density all argue that
it is very young, no more than a few hundred thousand years old. This may be
the youngest globular cluster yet observed.Comment: 6 pages, 2 color figures, Submitted to the ApJL, Revised 4/6/01 based
on referee's comment
Enhancing the utility of Proteomics Signature Profiling (PSP) with Pathway Derived Subnets (PDSs), performance analysis and specialised ontologies
10.1186/1471-2164-14-35BMC Genomics141BGME
Interaction of small size wave packet with hadron target
We calculate in QCD the cross section for the scattering of an energetic
small-size wave packet off a hadron target. We use our results to study the
small- behaviour of , the distribution over cross
section for the pion, in the leading -order.Comment: Revised version of the report CEBAF-TH-96-0
Practical trapped-ion protocols for universal qudit-based quantum computing
The notion of universal quantum computation can be generalized to multi-level
qudits, which offer advantages in resource usage and algorithmic efficiencies.
Trapped ions, which are pristine and well-controlled quantum systems, offer an
ideal platform to develop qudit-based quantum information processing. Previous
work has not fully explored the practicality of implementing trapped-ion qudits
accounting for known experimental error sources. Here, we describe a universal
set of protocols for state preparation, single-qudit gates, a new
generalization of the M\o{}lmer-S\o{}rensen gate for two-qudit gates, and a
measurement scheme which utilizes shelving to a meta-stable state. We
numerically simulate known sources of error from previous trapped ion
experiments, and show that there are no fundamental limitations to achieving
fidelities above for three-level qudits encoded in
ions. Our methods are extensible to higher-dimensional
qudits, and our measurement and single-qudit gate protocols can achieve
fidelities for five-level qudits. We identify avenues to further
decrease errors in future work. Our results suggest that three-level trapped
ion qudits will be a useful technology for quantum information processing
- …
