39,675 research outputs found

    Machine Learning Classification of SDSS Transient Survey Images

    Full text link
    We show that multiple machine learning algorithms can match human performance in classifying transient imaging data from the Sloan Digital Sky Survey (SDSS) supernova survey into real objects and artefacts. This is a first step in any transient science pipeline and is currently still done by humans, but future surveys such as the Large Synoptic Survey Telescope (LSST) will necessitate fully machine-enabled solutions. Using features trained from eigenimage analysis (principal component analysis, PCA) of single-epoch g, r and i-difference images, we can reach a completeness (recall) of 96 per cent, while only incorrectly classifying at most 18 per cent of artefacts as real objects, corresponding to a precision (purity) of 84 per cent. In general, random forests performed best, followed by the k-nearest neighbour and the SkyNet artificial neural net algorithms, compared to other methods such as na\"ive Bayes and kernel support vector machine. Our results show that PCA-based machine learning can match human success levels and can naturally be extended by including multiple epochs of data, transient colours and host galaxy information which should allow for significant further improvements, especially at low signal-to-noise.Comment: 14 pages, 8 figures. In this version extremely minor adjustments to the paper were made - e.g. Figure 5 is now easier to view in greyscal

    Simultaneous Measurements of Microwave Photoresistance and Cyclotron Reflection in the Multi-Photon Regime

    Full text link
    We simultaneously measure photoresistance with electrical transport and plasmon-cyclotron resonance (PCR) using microwave reflection spectroscopy in high mobility GaAs/AlGaAs quantum wells under a perpendicular magnetic field. Multi-photon transitions are revealed as sharp peaks in the resistance and the cyclotron reflection on samples with various carrier densities. Our main finding is that plasmon coupling is relevant in the cyclotron reflection spectrum but has not been observed in the electrical conductivity signal. We discuss possible mechanisms relevant to reflection or dc conductivity signal to explain this discrepancy. We further confirm a trend that higher order multi-photon features can be observed using higher carrier density samples.Comment: 19 pages, 5 figure

    Microwave photoresistance of a high-mobility two-dimensional electron gas in a triangular antidot lattice

    Full text link
    The microwave (MW) photoresistance has been measured on a high-mobility two-dimensional electron gas patterned with a shallow triangular antidot lattice, where both the MW-induced resistance oscillations (MIRO) and magnetoplasmon (MP) resonance are observed superposing on sharp commensurate geometrical resonance (GR). Analysis shows that the MIRO, MP, and GR are decoupled from each other in these experiments.Comment: 5 pages, 4 figures, paper accepted by PR

    Universal scaling of the pion, kaon and proton pTp_{\rm{T}} spectra in Pb-Pb collisions at 2.76 TeV

    Full text link
    With the experimental data collected by the ALICE collaboration in Pb-Pb collisions at a center-of-mass energy per nucleon pair 2.76 TeV for six different centralities (0-5%\%, 5-10%\%, 10-20%\%, 20-40%\%, 40-60%\% and 60-80%\%), we investigate the scaling property of the pion, kaon and proton transverse momentum (pTp_{\rm{T}}) spectra at these centralities. We show that in the low pTp_{\rm{T}} region with pTp_{\rm T} \leq 2.75 (3.10 and 2.35) GeV/c the pion (kaon and proton) spectra exhibit a scaling behaviour independent of the centrality of the collisions. This scaling behaviour arises when these spectra are presented in terms of a suitable variable, z=pT/Kz=p_{\rm{T}}/K. The scaling parameter KK is determined by the quality factor method and is parameterized by aNpartba \langle N_{\rm{part}}\rangle^{b}, where Npart\langle N_{\rm{part}}\rangle is the average value of the number of participating nucleons, aa and bb are free parameters, bb characterizes the rate at which lnK\textrm{ln} K changes with lnNpart\textrm{ln} \langle N_{\rm{part}}\rangle. The values of bb for pions and kaons are consistent within uncertainties, while they are smaller than that for protons. In the high pTp_{\rm{T}} region, due to the suppression of the spectra, a violation of the proposed scaling is observed going from central to peripheral collisions. The more peripheral the collisions are, the more clearly violated the proposed scaling becomes. In the framework of the colour string percolation model, we argue that the pions, kaons and protons originate from the fragmentation of clusters which are formed by strings overlapping and the cluster's fragmentation functions are different for different hadrons. The scaling behaviour of the pion, kaon and proton spectra in the low pTp_{\rm T} region can be simultaneously explained by the colour string percolation model in a qualitative way.Comment: 15 pages, 6 figures, accepted by Nucl. Phys.

    Observation of a cyclotron harmonic spike in microwave-induced resistances in ultraclean GaAs/AlGaAs quantum wells

    Full text link
    We report the observation of a colossal, narrow resistance peak that arises in ultraclean (mobility 3X10^7cm^2/Vs) GaAs/AlGaAs quantum wells (QWs) under millimeterwave irradiation and a weak magnetic field. Such a spike is superposed on the 2nd harmonic microwave-induced resistance oscillations (MIRO) but having an amplitude > 300% of the MIRO, and a typical FWHM ~50 mK, comparable with the Landau level width. Systematic studies show a correlation between the spike and a pronounced negative magnetoresistance in these QWs, suggesting a mechanism based on the interplay of strong scatterers and smooth disorder. Alternatively, the spike may be interpreted as a manifestation of quantum interference between the quadrupole resonance and the higher-order cyclotron transition in well-separated Landau levels.Comment: 4pages, 4figure

    Degenerate states of narrow semiconductor rings in the presence of spin orbit coupling: Role of time-reversal and large gauge transformations

    Full text link
    The electron Hamiltonian of narrow semiconductor rings with the Rashba and Dresselhaus spin orbit terms is invariant under time-reversal operation followed by a large gauge transformation. We find that all the eigenstates are doubly degenerate when integer or half-integer quantum fluxes thread the quantum ring. The wavefunctions of a degenerate pair are related to each other by the symmetry operation. These results are valid even in the presence of a disorder potential. When the Zeeman term is present only some of these degenerate levels anticross

    Rotating system for four-dimensional transverse rms-emittance measurements

    Full text link
    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.Comment: 11 pages, 10 figure
    corecore