2,331 research outputs found

    Abradable compressor and turbine seals, volume 2

    Get PDF
    The applications and advantages of abradable coatings as gas path seals in a general aviation turbofan engine were investigated. Abradable materials were evaluated for the high pressure radial compressor and the axial high and low pressure turbine shrouds

    Abradable compressor and turbine seals, volume 1

    Get PDF
    The application and advantages of abradable coatings as gas-path seals in a general aviation turbine engine were evaluated for use on the high-pressure compressor, the high-pressure turbine, and the low-pressure turbine shrouds. Topics covered include: (1) the initial selection of candidate materials for interim full-scale engine testing; (2) interim engine testing of the initially selected materials and additional candidate materials; (3) the design of the component required to adapt the hardware to permit full-scale engine testing of the most promising materials; (4) finalization of the fabrication methods used in the manufacture of engine test hardware; and (5) the manufacture of the hardware necessary to support the final full-scale engine tests

    Vocal tract resonances in singing: variation with laryngeal mechanism for male operatic singers in chest and falsetto registers

    No full text
    International audienceSeven male operatic singers sang the same notes and vowels in their chest and their falsetto registers, covering the overlap frequency range where two main laryngeal mechanisms can be identified by means of electroglottography: M1 in chest register and M2 in falsetto register. Glottal contact quotients determined using electroglottography were typically lower by 0.27 in M2 than in M1. Vocal tract resonance frequencies were measured by using broadband excitation at the lips and found to be typically lower in M2 than in M1 sung at the same pitch and vowel; R1 typically by 65 Hz and R2 by 90 Hz. These shifts in tract resonances were only weakly correlated with the changes in the contact quotient or laryngeal height that were measured simultaneously. There was considerable variability in the resonance tuning strategies used by the singers, and no evidence of a uniform systematic tuning strategy used by all singers. A simple model estimates that the shifts in resonance frequencies are consistent with the effective glottal area in falsetto register (M2) being 60%-70% of its value in chest register (M1)

    Bostonia: The Boston University Alumni Magazine. Volume 20

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Casimir Energy For a Massive Dirac Field in One Spatial Dimension: A Direct Approach

    Full text link
    In this paper we calculate the Casimir energy for a massive fermionic field confined between two points in one spatial dimension, with the MIT Bag Model boundary condition. We compute the Casimir energy directly by summing over the allowed modes. The method that we use is based on the Boyer's method, and there will be no need to resort to any analytic continuation techniques. We explicitly show the graph of the Casimir energy as a function of the distance between the points and the mass of the fermionic field. We also present a rigorous derivation of the MIT Bag Model boundary condition.Comment: 8 Pages, 4 Figure

    The Physicist's Guide to the Orchestra

    Get PDF
    An experimental study of strings, woodwinds (organ pipe, flute, clarinet, saxophone and recorder), and the voice was undertaken to illustrate the basic principles of sound production in music instruments. The setup used is simple and consists of common laboratory equipment. Although the canonical examples (standing wave on a string, in an open and closed pipe) are easily reproduced, they fail to explain the majority of the measurements. The reasons for these deviations are outlined and discussed.Comment: 11 pages, 10 figures (jpg files). Submitted to European Journal of Physic

    Jastrow-type calculations of one-nucleon removal reactions on open ss-dd shell nuclei

    Full text link
    Single-particle overlap functions and spectroscopic factors are calculated on the basis of Jastrow-type one-body density matrices of open-shell nuclei constructed by using a factor cluster expansion. The calculations use the relationship between the overlap functions corresponding to bound states of the (A1)(A-1)-particle system and the one-body density matrix for the ground state of the AA-particle system. In this work we extend our previous analyses of reactions on closed-shell nuclei by using the resulting overlap functions for the description of the cross sections of (p,d)(p,d) reactions on the open ss-dd shell nuclei 24^{24}Mg, 28^{28}Si and 32^{32}S and of 32^{32}S(e,ep)(e,e^{\prime}p) reaction. The relative role of both shell structure and short-range correlations incorporated in the correlation approach on the spectroscopic factors and the reaction cross sections is pointed out.Comment: 11 pages, 5 figures, to be published in Phys. Rev.

    Effect of substrate thermal resistance on space-domain microchannel

    Get PDF
    In recent years, Fluorescent Melting Curve Analysis (FMCA) has become an almost ubiquitous feature of commercial quantitative PCR (qPCR) thermal cyclers. Here a micro-fluidic device is presented capable of performing FMCA within a microchannel. The device consists of modular thermally conductive blocks which can sandwich a microfluidic substrate. Opposing ends of the blocks are held at differing temperatures and a linear thermal gradient is generated along the microfluidic channel. Fluorescent measurements taken from a sample as it passes along the micro-fluidic channel permits fluorescent melting curves to be generated. In this study we measure DNA melting temperature from two plasmid fragments. The effects of flow velocity and ramp-rate are investigated, and measured melting curves are compared to those acquired from a commercially available PCR thermocycler

    A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    Get PDF
    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research
    corecore