123,671 research outputs found
Analytical and scale model research aimed at improved hangglider design
Research consisted of a theoretical analysis which attempts to predict aerodynamic characteristics using lifting surface theory and finite-element structural analysis as well as an experimental investigation using 1/5 scale elastically similar models in the NASA Ames 2m x 3m (7' x 10') wind tunnel. Experimental data were compared with theoretical results in the development of a computer program which may be used in the design and evaluation of ultralight gliders
Acyclic orientations on the Sierpinski gasket
We study the number of acyclic orientations on the generalized
two-dimensional Sierpinski gasket at stage with equal to
two and three, and determine the asymptotic behaviors. We also derive upper
bounds for the asymptotic growth constants for and -dimensional
Sierpinski gasket .Comment: 20 pages, 8 figures and 6 table
Coherent spin mixing dynamics in a spin-1 atomic condensate
We study the coherent off-equilibrium spin mixing inside an atomic
condensate. Using mean field theory and adopting the single spatial mode
approximation (SMA), the condensate spin dynamics is found to be well described
by that of a nonrigid pendulum, and displays a variety of periodic oscillations
in an external magnetic field. Our results illuminate several recent
experimental observations and provide critical insights into the observation of
coherent interaction-driven oscillations in a spin-1 condensate.Comment: 6 pages, 5 eps figures, update the discussion of the experimental
result
A flowing plasma model to describe drift waves in a cylindrical helicon discharge
A two-fluid model developed originally to describe wave oscillations in the
vacuum arc centrifuge, a cylindrical, rapidly rotating, low temperature and
confined plasma column, is applied to interpret plasma oscillations in a RF
generated linear magnetised plasma (WOMBAT), with similar density and field
strength. Compared to typical centrifuge plasmas, WOMBAT plasmas have slower
normalised rotation frequency, lower temperature and lower axial velocity.
Despite these differences, the two-fluid model provides a consistent
description of the WOMBAT plasma configuration and yields qualitative agreement
between measured and predicted wave oscillation frequencies with axial field
strength. In addition, the radial profile of the density perturbation predicted
by this model is consistent with the data. Parameter scans show that the
dispersion curve is sensitive to the axial field strength and the electron
temperature, and the dependence of oscillation frequency with electron
temperature matches the experiment. These results consolidate earlier claims
that the density and floating potential oscillations are a resistive drift
mode, driven by the density gradient. To our knowledge, this is the first
detailed physics model of flowing plasmas in the diffusion region away from the
RF source. Possible extensions to the model, including temperature
non-uniformity and magnetic field oscillations, are also discussed
A three-dimensional algebraic grid generation scheme for gas turbine combustors with inclined slots
A 3D algebraic grid generation scheme is presented for generating the grid points inside gas turbine combustors with inclined slots. The scheme is based on the 2D transfinite interpolation method. Since the scheme is a 2D approach, it is very efficient and can easily be extended to gas turbine combustors with either dilution hole or slot configurations. To demonstrate the feasibility and the usefulness of the technique, a numerical study of the quick-quench/lean-combustion (QQ/LC) zones of a staged turbine combustor is given. Preliminary results illustrate some of the major features of the flow and temperature fields in the QQ/LC zones. Formation of co- and counter-rotating bulk flow and shape temperature fields can be observed clearly, and the resulting patterns are consistent with experimental observations typical of the confined slanted jet-in-cross flow. Numerical solutions show the method to be an efficient and reliable tool for generating computational grids for analyzing gas turbine combustors with slanted slots
Development of a variational SEASAT data analysis technique
Oceans are data-sparse areas in terms of conventional weather observations. The surface pressure field obtained solely by analyzing the conventional weather data is not expected to possess high accuracy. On the other hand, in entering asynoptic data such as satellite-derived temperature soundings into an atmospheric prediction system, an improved surface analysis is crucial for obtaining more accurate weather predictions because the mass distribution of the entire atmosphere will be better represented in the system as a result of the more accurate surface pressure field. In order to obtain improved surface pressure analyses over the oceans, a variational adjustment technique was developed to help blend the densely distributed surface wind data derived from the SEASAT-A radar observations into the sparsely distributed conventional pressure data. A simple marine boundary layer scheme employed in the adjustment technique was discussed. In addition, a few aspects of the current technique were determined by numerical experiments
Atomic entanglement near a realistic microsphere
We study a scheme for entangling two-level atoms located close to the surface
of a dielectric microsphere. The effect is based on medium-assisted spontaneous
decay, rigorously taking into account dispersive and absorptive properties of
the microsphere. We show that even in the weak-coupling regime, where the
Markov approximation applies, entanglement up to 0.35 ebits between two atoms
can be created. However, larger entanglement and violation of Bell's inequality
can only be achieved in the strong-coupling regime.Comment: 16 pages, 4 figures, Late
On a class of reductions of Manakov-Santini hierarchy connected with the interpolating system
Using Lax-Sato formulation of Manakov-Santini hierarchy, we introduce a class
of reductions, such that zero order reduction of this class corresponds to dKP
hierarchy, and the first order reduction gives the hierarchy associated with
the interpolating system introduced by Dunajski. We present Lax-Sato form of
reduced hierarchy for the interpolating system and also for the reduction of
arbitrary order. Similar to dKP hierarchy, Lax-Sato equations for (Lax
fuction) due to the reduction split from Lax-Sato equations for (Orlov
function), and the reduced hierarchy for arbitrary order of reduction is
defined by Lax-Sato equations for only. Characterization of the class of
reductions in terms of the dressing data is given. We also consider a waterbag
reduction of the interpolating system hierarchy, which defines
(1+1)-dimensional systems of hydrodynamic type.Comment: 15 pages, revised and extended, characterization of the class of
reductions in terms of the dressing data is give
- …
