17,188 research outputs found

    Restoration of multichannel microwave radiometric images

    Get PDF
    A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation

    Fermion Masses and Mixings in GUTs with Non-Canonical U(1)_Y

    Full text link
    We discuss fermion masses and mixings in models derived from orbifold GUTs such that gauge coupling unification is achieved without low energy supersymmetry by utilizing a non-canonical U(1)_Y. A gauged U(1)_X flavor symmetry plays an essential role, and the Green-Schwarz mechanism is invoked in anomaly cancellations. Models containing vector-like particles with masses close to M_{GUT} are also discussed.Comment: 18 page

    Ultracold molecules: vehicles to scalable quantum information processing

    Full text link
    We describe a novel scheme to implement scalable quantum information processing using Li-Cs molecular state to entangle 6^{6}Li and 133^{133}Cs ultracold atoms held in independent optical lattices. The 6^{6}Li atoms will act as quantum bits to store information, and 133^{133}Cs atoms will serve as messenger bits that aid in quantum gate operations and mediate entanglement between distant qubit atoms. Each atomic species is held in a separate optical lattice and the atoms can be overlapped by translating the lattices with respect to each other. When the messenger and qubit atoms are overlapped, targeted single spin operations and entangling operations can be performed by coupling the atomic states to a molecular state with radio-frequency pulses. By controlling the frequency and duration of the radio-frequency pulses, entanglement can either be created or swapped between a qubit messenger pair. We estimate operation fidelities for entangling two distant qubits and discuss scalability of this scheme and constraints on the optical lattice lasers

    Resolution enhancement of multichannel microwave imagery from the Nimbus-7 SMMR for maritime rainfall analysis

    Get PDF
    A restoration of the 37, 21, 18, 10.7, and 6.6 GHz satellite imagery from the scanning multichannel microwave radiometer (SMMR) aboard Nimbus-7 to 22.2 km resolution is attempted using a deconvolution method based upon nonlinear programming. The images are deconvolved with and without the aid of prescribed constraints, which force the processed image to abide by partial a priori knowledge of the high-resolution result. The restored microwave imagery may be utilized to examined the distribution of precipitating liquid water in marine rain systems

    Adhesion Induced DNA Naturation

    Get PDF
    DNA adsorption and naturation is modeled via two interacting flexible homopolymers coupled to a solid surface. DNA denatures if the entropy gain for unbinding the two strands overcomes the loss of binding energy. When adsorbed to a surface, the entropy gain is smaller than in the bulk, leading to a stronger binding and, upon neglecting self-avoidance, absence of a denatured phase. Now consider conditions where the binding potentials are too weak for naturation, and the surface potential too weak to adsorb single strands. In a variational approach it is shown that their combined action may lead to a naturated adsorbed phase. Conditions for the absence of naturation and adsorption are derived too. The phase diagram is constructed qualitatively.Comment: 4 pages, 1 figur

    Prostaglandin E2 promotes intestinal repair through an adaptive cellular response of the epithelium

    Get PDF
    Adaptive cellular responses are often required during wound repair. Following disruption of the intestinal epithelium, wound‐associated epithelial (WAE) cells form the initial barrier over the wound. Our goal was to determine the critical factor that promotes WAE cell differentiation. Using an adaptation of our in vitro primary epithelial cell culture system, we found that prostaglandin E2 (PGE (2)) signaling through one of its receptors, Ptger4, was sufficient to drive a differentiation state morphologically and transcriptionally similar to in vivo WAE cells. WAE cell differentiation was a permanent state and dominant over enterocyte differentiation in plasticity experiments. WAE cell differentiation was triggered by nuclear β‐catenin signaling independent of canonical Wnt signaling. Creation of WAE cells via the PGE (2)‐Ptger4 pathway was required in vivo, as mice with loss of Ptger4 in the intestinal epithelium did not produce WAE cells and exhibited impaired wound repair. Our results demonstrate a mechanism by which WAE cells are formed by PGE (2) and suggest a process of adaptive cellular reprogramming of the intestinal epithelium that occurs to ensure proper repair to injury

    Valley degeneracy in biaxially strained aluminum arsenide quantum wells

    Full text link
    This paper details a complete formalism for calculating electron subband energy and degeneracy in strained multi-valley quantum wells grown along any orientation with explicit results for the AlAs quantum well case. A standardized rotation matrix is defined to transform from the conventional- cubic-cell basis to the quantum-well-transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) quantum wells are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain in the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The notation is generalized to include miscut angles, and can be adapted to other multi-valley systems. To help classify anisotropic inter-valley scattering events, a new primitive unit cell is defined in momentum space which allows one to distinguish purely in-plane inter-valley scattering events from those that requires an out-of-plane momentum scattering component.Comment: 17 pages, 4 figures, 2 table

    Spectroscopy of Ultracold, Trapped Cesium Feshbach Molecules

    Full text link
    We explore the rich internal structure of Cs_2 Feshbach molecules. Pure ultracold molecular samples are prepared in a CO_2-laser trap, and a multitude of weakly bound states is populated by elaborate magnetic-field ramping techniques. Our methods use different Feshbach resonances as input ports and various internal level crossings for controlled state transfer. We populate higher partial-wave states of up to eight units of rotational angular momentum (l-wave states). We investigate the molecular structure by measurements of the magnetic moments for various states. Avoided level crossings between different molecular states are characterized through the changes in magnetic moment and by a Landau-Zener tunneling method. Based on microwave spectroscopy, we present a precise measurement of the magnetic-field dependent binding energy of the weakly bound s-wave state that is responsible for the large background scattering length of Cs. This state is of particular interest because of its quantum-halo character.Comment: 15 pages, 12 figures, 4 table

    Sex and Gender in Medical Education, and proceedings from the 2015 Sex and Gender Education Summit

    Get PDF
    The Sex and Gender Medical Education Summit: a roadmap for curricular innovation was a collaborative initiative of the American Medical Women\u27s Association, Laura W. Bush Institute for Women’s Health, Mayo Clinic, and Society for Women\u27s Health Research (www.sgbmeducationsummit.com). It was held on October 18–19, 2015 to provide a unique venue for collaboration among nationally and internationally renowned experts in developing a roadmap for the incorporation of sex and gender based concepts into medical education curricula. The Summit engaged 148 in-person attendees for the 1 1/2-day program. Pre- and post-Summit surveys assessed the impact of the Summit, and workshop discussions provided a framework for informal consensus building. Sixty-one percent of attendees indicated that the Summit had increased their awareness of the importance of sex and gender specific medicine. Other comments indicate that the Summit had a significant impact for motivating a call to action among attendees and provided resources to initiate change in curricula within their home institutions. These educational efforts will help to ensure a sex and gender basis for delivery of health care in the future
    corecore