7,908 research outputs found
Context-aware movie recommendations: An empirical comparison of pre-filtering, post-filtering and contextual modeling approaches
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-39878-0_13Proceedings of 14th International Conference, EC-Web 2013, Prague, Czech Republic, August 27-28, 2013.Context-aware recommender systems have been proven to improve the performance of recommendations in a wide array of domains and applications. Despite individual improvements, little work has been done on comparing different approaches, in order to determine which of them outperform the others, and under what circumstances. In this paper we address this issue by conducting an empirical comparison of several pre-filtering, post-filtering and contextual modeling approaches on the movie recommendation domain. To acquire confident contextual information, we performed a user study where participants were asked to rate movies, stating the time and social companion with which they preferred to watch the rated movies. The results of our evaluation show that there is neither a clear superior contextualization approach nor an always best contextual signal, and that achieved improvements depend on the recommendation algorithm used together with each contextualization approach. Nonetheless, we conclude with a number of cues and advices about which particular combinations of contextualization approaches and recommendation algorithms could be better suited for the movie recommendation domain.This work was supported by the Spanish Government
(TIN2011-28538-C02) and the Regional Government of Madrid (S2009TIC-1542
The Structure of Nanoscale Polaron Correlations in La1.2Sr1.8Mn2O7
A system of strongly-interacting electron-lattice polarons can exhibit charge
and orbital order at sufficiently high polaron concentrations. In this study,
the structure of short-range polaron correlations in the layered colossal
magnetoresistive perovskite manganite, La1.2Sr1.8Mn2O7, has been determined by
a crystallographic analysis of broad satellite maxima observed in diffuse X-ray
and neutron scattering data. The resulting q=(0.3,0,1) modulation is a
longitudinal octahedral-stretch mode, consistent with an incommensurate
Jahn-Teller-coupled charge-density-wave fluctuations, that implies an unusual
orbital-stripe pattern parallel to the directions.Comment: Reformatted with RevTe
Glass Transition in the Polaron Dynamics of CMR Manganites
Neutron scattering measurements on a bilayer manganite near optimal doping
show that the short-range polarons correlations are completely dynamic at high
T, but then freeze upon cooling to a temperature T* 310 K. This glass
transition suggests that the paramagnetic/insulating state arises from an
inherent orbital frustration that inhibits the formation of a long range
orbital- and charge-ordered state. Upon further cooling into the
ferromagnetic-metallic state (Tc=114 K), where the polarons melt, the diffuse
scattering quickly develops into a propagating, transverse optic phonon.Comment: 4 pages, 4 figures. Physical Review Letters (in Press
Determining the Physical Lens Parameters of the Binary Gravitational Microlensing Event MOA-2009-BLG-016
We report the result of the analysis of the light curve of the microlensing
event MOA-2009-BLG-016. The light curve is characterized by a short-duration
anomaly near the peak and an overall asymmetry. We find that the peak anomaly
is due to a binary companion to the primary lens and the asymmetry of the light
curve is explained by the parallax effect caused by the acceleration of the
observer over the course of the event due to the orbital motion of the Earth
around the Sun. In addition, we detect evidence for the effect of the finite
size of the source near the peak of the event, which allows us to measure the
angular Einstein radius of the lens system. The Einstein radius combined with
the microlens parallax allows us to determine the total mass of the lens and
the distance to the lens. We identify three distinct classes of degenerate
solutions for the binary lens parameters, where two are manifestations of the
previously identified degeneracies of close/wide binaries and positive/negative
impact parameters, while the third class is caused by the symmetric cycloid
shape of the caustic. We find that, for the best-fit solution, the estimated
mass of the lower-mass component of the binary is (0.04 +- 0.01) M_sun,
implying a brown-dwarf companion. However, there exists a solution that is
worse only by \Delta\chi^2 ~ 3 for which the mass of the secondary is above the
hydrogen-burning limit. Unfortunately, resolving these two degenerate solutions
will be difficult as the relative lens-source proper motions for both are
similar and small (~ 1 mas/yr) and thus the lens will remain blended with the
source for the next several decades.Comment: 7 pages, 2 tables, and 5 figure
The Average Kinetic Energy of the Superconducting State
Isothermal magnetization curves are plotted as the magnetization times the
magnetic induction, , versus the applied field, H. We show
here that this new curve is the average kinetic energy of the superconducting
state versus the applied field, for type-II superconductors with a high
Ginzburg-Landau parameter . The maximum of occurs at
a field, , directly related to the upper critical field, ,
suggesting that may be extracted from such plots even in cases when
it is too high for direct measurement. We obtain these plots both
theoretically, from the Ginzburg-Landau theory, and experimentally, using a
Niobium sample with , and compare them.Comment: 11 pages, 9 postscript figure
Application of IUCN red listing criteria at the regional and national levels: A case study from central Asia
Local density of states and scanning tunneling currents in graphene
We present exact analytical calculations of scanning tunneling currents in
locally disordered graphene using a multimode description of the microscope
tip. Analytical expressions for the local density of states (LDOS) are given
for energies beyond the Dirac cone approximation. We show that the LDOS at the
and sublattices of graphene are out of phase by implying that the
averaged LDOS, as one moves away from the impurity, shows no trace of the
(with the Fermi momentum) Friedel modulation. This means that a
STM experiment lacking atomic resolution at the sublattice level will not be
able of detecting the presence of the Friedel oscillations [this seems to be
the case in the experiments reported in Phys. Rev. Lett. {\bf 101}, 206802
(2008)]. The momentum maps of the LDOS for different types of impurities are
given. In the case of the vacancy, features are seen in these maps. In
all momentum space maps, and features are seen. The
features are different from what is seen around zero momentum. An
interpretation for these features is given. The calculations reported here are
valid for chemical substitution impurities, such as boron and nitrogen atoms,
as well as for vacancies. It is shown that the density of states close to the
impurity is very sensitive to type of disorder: diagonal, non-diagonal, or
vacancies. In the case of weakly coupled (to the carbon atoms) impurities, the
local density of states presents strong resonances at finite energies, which
leads to steps in the scanning tunneling currents and to suppression of the
Fano factor.Comment: 21 pages. Figures 6 and 7 are correctly displayed in this new versio
Local structure study of In_xGa_(1-x)As semiconductor alloys using High Energy Synchrotron X-ray Diffraction
Nearest and higher neighbor distances as well as bond length distributions
(static and thermal) of the In_xGa_(1-x)As (0<x<1) semiconductor alloys have
been obtained from high real-space resolution atomic pair distribution
functions (PDFs). Using this structural information, we modeled the local
atomic displacements in In_xGa_(1-x)As alloys. From a supercell model based on
the Kirkwood potential, we obtained 3-D As and (In,Ga) ensemble averaged
probability distributions. This clearly shows that As atom displacements are
highly directional and can be represented as a combination of and
displacements. Examination of the Kirkwood model indicates that the standard
deviation (sigma) of the static disorder on the (In,Ga) sublattice is around
60% of the value on the As sublattice and the (In,Ga) atomic displacements are
much more isotropic than those on the As sublattice. The single crystal diffuse
scattering calculated from the Kirkwood model shows that atomic displacements
are most strongly correlated along directions.Comment: 10 pages, 12 figure
High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines.
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo
- …
