12,041 research outputs found
Magnetic field waves at Uranus
The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft
Project Report No. 67, A Whole-Stand Growth and Yield Model for Unmanaged Loblolly and Slash Pine Plantations in East Texas
The amount of forestland in east Texas has been estimated at 11.8 million acres, with approximately 2.5 million acres classified as pine plantations. The majority of these plantations are owned by forest industry (71 percent), while non-industrial private forest landowners represent the next largest shareholder (23 percent). Pine plantations are typically managed to produce timber, so information is needed to make informed management decisions. Growth is one piece of information that managers often rely upon in their decision-making process.
The purpose of this paper is to develop an updated whole-stand growth and yield model for unmanaged loblolly and slash pine plantations in east Texas that improves upon the whole-stand model of Coble (2009). Specifically, this updated model includes a new equation to predict average stand diameter as well as an improved survival function
Versatile transporter apparatus for experiments with optically trapped Bose-Einstein condensates
We describe a versatile and simple scheme for producing magnetically and
optically-trapped Rb-87 Bose-Einstein condensates, based on a moving-coil
transporter apparatus. The apparatus features a TOP trap that incorporates the
movable quadrupole coils used for magneto-optical trapping and long-distance
magnetic transport of atomic clouds. As a stand-alone device, this trap allows
for the stable production of condensates containing up to one million atoms. In
combination with an optical dipole trap, the TOP trap acts as a funnel for
efficient loading, after which the quadrupole coils can be retracted, thereby
maximizing optical access. The robustness of this scheme is illustrated by
realizing the superfluid-to-Mott insulator transition in a three-dimensional
optical lattice
Andromeda's Parachute: A Bright Quadruply Lensed Quasar at z=2.377
We present Keck Cosmic Web Imager spectroscopy of the four putative images of
the lensed quasar candidate J014709+463037 recently discovered by Berghea et
al. (2017). The data verify the source as a quadruply lensed, broad
absorption-line quasar having z_S = 2.377 +/- 0.007. We detect intervening
absorption in the FeII 2586, 2600, MgII 2796, 2803, and/or CIV 1548, 1550
transitions in eight foreground systems, three of which have redshifts
consistent with the photometric-redshift estimate reported for the lensing
galaxy (z_L ~ 0.57). By virtue of their positions on the sky, the source images
probe these absorbers over transverse physical scales of ~0.3-21 kpc,
permitting assessment of the variation in metal-line equivalent width W_r as a
function of sight-line separation. We measure differences in W_r,2796 of <40%
across all sight-line pairs subtending 7-21 kpc, suggestive of a high degree of
spatial coherence for MgII-absorbing material. W_r,2600 is observed to vary by
>50% over the same scales across the majority of sight-line pairs, while CIV
absorption exhibits a wide range in W_r,1548 differences of ~5-80% within
transverse distances less than ~3 kpc. J014709+463037 is one of only a handful
of z > 2 quadruply lensed systems for which all four source images are very
bright (r = 15.4-17.7 mag) and are easily separated in ground-based seeing
conditions. As such, it is an ideal candidate for higher-resolution
spectroscopy probing the spatial variation in the kinematic structure and
physical state of intervening absorbers.Comment: Submitted to ApJL. 9 pages, 3 figures. Uses aastex61 forma
Exploring quantum criticality based on ultracold atoms in optical lattices
Critical behavior developed near a quantum phase transition, interesting in
its own right, offers exciting opportunities to explore the universality of
strongly-correlated systems near the ground state. Cold atoms in optical
lattices, in particular, represent a paradigmatic system, for which the quantum
phase transition between the superfluid and Mott insulator states can be
externally induced by tuning the microscopic parameters. In this paper, we
describe our approach to study quantum criticality of cesium atoms in a
two-dimensional lattice based on in situ density measurements. Our research
agenda involves testing critical scaling of thermodynamic observables and
extracting transport properties in the quantum critical regime. We present and
discuss experimental progress on both fronts. In particular, the thermodynamic
measurement suggests that the equation of state near the critical point follows
the predicted scaling law at low temperatures.Comment: 15 pages, 6 figure
The Stony Brook / SMARTS Atlas of mostly Southern Novae
We introduce the Stony Brook / SMARTS Atlas of (mostly) Southern Novae. This
atlas contains both spectra and photometry obtained since 2003. The data
archived in this atlas will facilitate systematic studies of the nova
phenomenon and correlative studies with other comprehensive data sets. It will
also enable detailed investigations of individual objects. In making the data
public we hope to engender more interest on the part of the community in the
physics of novae. The atlas is on-line at
\url{http://www.astro.sunysb.edu/fwalter/SMARTS/NovaAtlas/} .Comment: 11 figures; 5 table
Pathway to the PiezoElectronic Transduction Logic Device
The information age challenges computer technology to process an
exponentially increasing computational load on a limited energy budget - a
requirement that demands an exponential reduction in energy per operation. In
digital logic circuits, the switching energy of present FET devices is
intimately connected with the switching voltage, and can no longer be lowered
sufficiently, limiting the ability of current technology to address the
challenge. Quantum computing offers a leap forward in capability, but a clear
advantage requires algorithms presently developed for only a small set of
applications. Therefore, a new, general purpose, classical technology based on
a different paradigm is needed to meet the ever increasing demand for data
processing.Comment: in Nano Letters (2015
Probing the Rho Spectral Function in Hot and Dense Nuclear Matter by Dileptons
We present a dynamical study of and production in
proton-nucleus and nucleus-nucleus collisions at CERN-SPS energies on the basis
of the covariant transport approach HSD employing a momentum-dependent
-meson spectral function that includes the pion modifications in the
nuclear medium as well as the polarization of the -meson due to resonant
scattering. We find that the experimental data from the CERES and
HELIOS-3 Collaborations can be described equally well as within the dropping
-mass scenario. Whereas corresponding dilepton -spectra are found to
be very similar, the inclusive dilepton yield in the invariant mass range GeV should allow to disentangle the two scenarios
experimentally.Comment: 13 pages RevTeX slightly revised, 6 eps-figure
- …
