12,459 research outputs found
Pulsar Glitches in a Strangeon Star Model
Pulsar-like compact stars provide us a unique laboratory to explore
properties of dense matter at supra-nuclear densities. One of the models for
pulsar-like stars is that they are totally composed of "strangeons", and in
this paper we studied the pulsar glitches in a strangeon star model. Strangeon
stars would be solidified during cooling, and the solid stars would be natural
to have glitches as the result of starquakes. Based on the starquake model
established before, we proposed that when the starquake occurs, the inner
motion of the star which changes the moment of inertia and has impact on the
glitch sizes, is divided into plastic flow and elastic motion. The plastic flow
which is induced in the fractured part of the outer layer, would move
tangentially to redistribute the matter of the star and would be hard to
recover. The elastic motion, on the other hand, changes its shape and would
recover significantly. Under this scenario, we could understand the behaviors
of glitches without significant energy releasing, including the Crab and the
Vela pulsars, in an uniform model. We derive the recovery coefficient as a
function of glitch size, as well as the time interval between two successive
glitches as the function of the released stress. Our results show consistency
with observational data under reasonable ranges of parameters. The implications
on the oblateness of the Crab and the Vela pulsars are discussed.Comment: MNRAS, accepte
Diversity of eukaryotic plankton of aquaculture ponds with Carassius auratus gibelio, using denaturing gradient gel electrophoresis
PCR-denaturing gradient gel electrophoresis (DGGE) and canonical correspondence analysis (CCA) were used to explore the relationship between eukaryotic plankton community succession and environmental factors in two aquaculture pond models with gibel carp Carassius auratus gibelio. The main culture species of pond 1 were gibel carp and grass carp, and the combined density was 46224 fingerling/ha (gibel carp/grass carp/silver carp/bighead carp, 17:4:6:1). The main culture species of pond 2 was gibel carp, and the combined density was 37551 fingerling/ha (gibel carp/silver carp/bighead carp, 52:1:1). Water samples were collected monthly. The results showed that the annual average concentrations of TP and PO_4-P in pond 1 were significantly higher than pond 2 (p>0.05). The concentration of chlorophyll a (chl a) has no significantly difference between pond 1 and pond 2. DGGE profiles of 18S rRNA gene fragments from the two ponds revealed that the diversity of eukaryotic plankton assemblages was highly variable. 91 bands and 71 bands were detected in pond 1 and pond 2, respectively. The average Shannon–Wiener index of pond 1 was significantly higher than pond 2. Canonical correspondence analysis (CCA) revealed that temperature played a key role in the structure of the eukaryotic plankton community in both ponds, but the nutrient concentration did not affect it. Our results suggest that DGGE method is a cost-effective way to gain insight into seasonal dynamics of eukaryotic plankton communities in culture ponds, and the increase in the number of filter-feeding silver carp and bighead carp could increase the diversity of the eukaryotic plankton community
Single crystal growth of the pyrochlores TiO ( = rare earth) by the optical floating-zone method
We report a systematic study on the crystal growth of the rare-earth
titanates TiO ( = Gd, Tb, Dy, Ho, Y, Er, Yb and Lu) and Y-doped
TbYTiO ( = 0.2 and 1) using an optical floating-zone
method. High-quality single crystals were successfully obtained and the growth
conditions were carefully optimized. The oxygen pressure was found to be the
most important parameter and the appropriate ones are 0.1--0.4 MPa, depending
on the radius of rare-earth ions. The growth rate is another parameter and was
found to be 2.5--4 mm/h for different rare-earth ions. X-ray diffraction data
demonstrated the good crystallinity of these crystals. The basic physical
properties of these crystals were characterized by the magnetic susceptibility
and specific heat measurements.Comment: 18 pages, 7 figures, 1 table, published in Journal Crystal Growt
Observation of non-Fermi liquid behavior in hole-doped LiFeVAs
We synthesized a series of V-doped LiFeVAs single crystals. The
superconducting transition temperature of LiFeAs decreases rapidly at a
rate of 7 K per 1\% V. The Hall coefficient of LiFeAs switches from negative to
positive with 4.2\% V doping, showing that V doping introduces hole carriers.
This observation is further confirmed by the evaluation of the Fermi surface
volume measured by angle-resolved photoemission spectroscopy (ARPES), from
which a 0.3 hole doping per V atom introduced is deduced. Interestingly, the
introduction of holes does not follow a rigid band shift. We also show that the
temperature evolution of the electrical resistivity as a function of doping is
consistent with a crossover from a Fermi liquid to a non-Fermi liquid. Our
ARPES data indicate that the non-Fermi liquid behavior is mostly enhanced when
one of the hole Fermi surfaces is well nested by the
antiferromagnetic wave vector to the inner electron Fermi surface pocket with
the orbital character. The magnetic susceptibility of
LiFeVAs suggests the presence of strong magnetic impurities
following V doping, thus providing a natural explanation to the rapid
suppression of superconductivity upon V doping.Comment: 7 pages, 5 figures. See published version for the latest updat
New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model
From the macroscopic viewpoint for describing the acceleration behavior of
drivers, this letter presents a weighted probabilistic cellular automaton model
(the WP model, for short) by introducing a kind of random acceleration
probabilistic distribution function. The fundamental diagrams, the
spatio-temporal pattern are analyzed in detail. It is shown that the presented
model leads to the results consistent with the empirical data rather well,
nonlinear velocity-density relationship exists in lower density region, and a
new kind of traffic phenomenon called neo-synchronized flow is resulted.
Furthermore, we give the criterion for distinguishing the high-speed and
low-speed neo-synchronized flows and clarify the mechanism of this kind of
traffic phenomena. In addition, the result that the time evolution of
distribution of headways is displayed as a normal distribution further
validates the reasonability of the neo-synchronized flow. These findings
suggest that the diversity and randomicity of drivers and vehicles has indeed
remarkable effect on traffic dynamics.Comment: 12 pages, 5 figures, submitted to Europhysics Letter
Dirac Line-nodes and Effect of Spin-orbit Coupling in Non-symmorphic Critical Semimetal MSiS (M=Hf, Zr)
Topological Dirac semimetals (TDSs) represent a new state of quantum matter
recently discovered that offers a platform for realizing many exotic physical
phenomena. A TDS is characterized by the linear touching of bulk (conduction
and valance) bands at discrete points in the momentum space (i.e. 3D Dirac
points), such as in Na3Bi and Cd3As2. More recently, new types of Dirac
semimetals with robust Dirac line-nodes (with non-trivial topology or near the
critical point between topological phase transitions) have been proposed that
extends the bulk linear touching from discrete points to 1D lines. In this
work, using angle-resolved photoemission spectroscopy (ARPES), we explored the
electronic structure of the non-symmorphic crystals MSiS (M=Hf, Zr).
Remarkably, by mapping out the band structure in the full 3D Brillouin Zone
(BZ), we observed two sets of Dirac line-nodes in parallel with the kz-axis and
their dispersions. Interestingly, along directions other than the line-nodes in
the 3D BZ, the bulk degeneracy is lifted by spin-orbit coupling (SOC) in both
compounds with larger magnitude in HfSiS. Our work not only experimentally
confirms a new Dirac line-node semimetal family protected by non-symmorphic
symmetry, but also helps understanding and further exploring the exotic
properties as well as practical applications of the MSiS family of compounds.Comment: 5 figure
- …
