2,328 research outputs found
A General Approach to Optomechanical Parametric Instabilities
We present a simple feedback description of parametric instabilities which
can be applied to a variety of optical systems. Parametric instabilities are of
particular interest to the field of gravitational-wave interferometry where
high mechanical quality factors and a large amount of stored optical power have
the potential for instability. In our use of Advanced LIGO as an example
application, we find that parametric instabilities, if left unaddressed,
present a potential threat to the stability of high-power operation
Frequency-Dependent Squeezing for Advanced LIGO
The first detection of gravitational waves by the Laser Interferometer
Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational
wave astronomy. The quest for gravitational wave signals from objects that are
fainter or farther away impels technological advances to realize ever more
sensitive detectors. Since 2019, one advanced technique, the injection of
squeezed states of light is being used to improve the shot noise limit to the
sensitivity of the Advanced LIGO detectors, at frequencies above Hz.
Below this frequency, quantum back action, in the form of radiation pressure
induced motion of the mirrors, degrades the sensitivity. To simultaneously
reduce shot noise at high frequencies and quantum radiation pressure noise at
low frequencies requires a quantum noise filter cavity with low optical losses
to rotate the squeezed quadrature as a function of frequency. We report on the
observation of frequency-dependent squeezed quadrature rotation with rotation
frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is
developed for this frequency-dependent squeezed vacuum source, and the results
presented here demonstrate that a low-loss filter cavity can achieve the
squeezed quadrature rotation necessary for the next planned upgrade to Advanced
LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let
Angular control of optical cavities in a radiation-pressure-dominated regime: the Enhanced LIGO case
We describe the angular sensing and control (ASC) of 4 km detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO). Enhanced LIGO, the culmination of the first generation LIGO detectors, operated between 2009 and 2010 with about 40 kW of laser power in the arm cavities. In this regime, radiation-pressure effects are significant and induce instabilities in the angular opto-mechanical transfer functions. Here we present and motivate the ASC design in this extreme case and present the results of its implementation in Enhanced LIGO. Highlights of the ASC performance are successful control of opto-mechanical torsional modes, relative mirror motions of ≤ 1×10^−7 rad rms, and limited impact on in-band strain sensitivity
Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium
The mirror relative motion of a suspended Fabry-Perot cavity is studied in
the frequency range 3-10 Hz. The experimental measurements presented in this
paper, have been performed at the Low Frequency Facility, a high finesse
optical cavity 1 cm long suspended to a mechanical seismic isolation system
identical to that one used in the VIRGO experiment. The measured relative
displacement power spectrum is compatible with a system at thermal equilibrium
within its environmental. In the frequency region above 3 Hz, where seismic
noise contamination is negligible, the measurement distribution is stationary
and Gaussian, as expected for a system at thermal equilibrium. Through a simple
mechanical model it is shown that: applying the fluctuation dissipation theorem
the measured power spectrum is reproduced below 90 Hz and noise induced by
external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
A Cryogenic Silicon Interferometer for Gravitational-wave Detection
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
- …
