575 research outputs found

    Bijectivity of the canonical map for the noncommutative instanton bundle

    Full text link
    It is shown that the quantum instanton bundle introduced in Commun. Math. Phys. 226, 419-432 (2002) has a bijective canonical map and is, therefore, a coalgebra Galois extension.Comment: Latex, 12 pages. Published versio

    Differential calculus on the quantum Heisenberg group

    Full text link
    The differential calculus on the quantum Heisenberg group is conlinebreak structed. The duality between quantum Heisenberg group and algebra is proved.Comment: AMSTeX, Pages

    Free q-Schrodinger Equation from Homogeneous Spaces of the 2-dim Euclidean Quantum Group

    Full text link
    After a preliminary review of the definition and the general properties of the homogeneous spaces of quantum groups, the quantum hyperboloid qH and the quantum plane qP are determined as homogeneous spaces of Fq(E(2)). The canonical action of Eq(2) is used to define a natural q-analog of the free Schro"dinger equation, that is studied in the momentum and angular momentum bases. In the first case the eigenfunctions are factorized in terms of products of two q-exponentials. In the second case we determine the eigenstates of the unitary representation, which, in the qP case, are given in terms of Hahn-Exton functions. Introducing the universal T-matrix for Eq(2) we prove that the Hahn-Exton as well as Jackson q-Bessel functions are also obtained as matrix elements of T, thus giving the correct extension to quantum groups of well known methods in harmonic analysis.Comment: 19 pages, plain tex, revised version with added materia

    Free-Field Representation of Group Element for Simple Quantum Group

    Get PDF
    A representation of the group element (also known as ``universal T{\cal T}-matrix'') which satisfies Δ(g)=gg\Delta(g) = g\otimes g, is given in the form g=(s=1dB.> E1/qi(s)(χ(s)Ti(s)))q2ϕH(s=1dB.< Eqi(s)(ψ(s)T+i(s))) g = \left(\prod_{s=1}^{d_B}\phantom.^>\ {\cal E}_{1/q_{i(s)}}(\chi^{(s)}T_{-i(s)})\right) q^{2\vec\phi\vec H} \left(\prod_{s=1}^{d_B}\phantom.^<\ {\cal E}_{q_{i(s)}}(\psi^{(s)} T_{+i(s)})\right) where dB=12(dGrG)d_B = \frac{1}{2}(d_G - r_G), qi=qαi2/2q_i = q^{|| \vec\alpha_i||^2/2} and Hi=2Hαi/αi2H_i = 2\vec H\vec\alpha_i/||\vec\alpha_i||^2 and T±iT_{\pm i} are the generators of quantum group associated respectively with Cartan algebra and the {\it simple} roots. The ``free fields'' $\chi,\ \vec\phi,\ \psiformaHeisenberglikealgebra: form a Heisenberg-like algebra: \psi^{(s)}\psi^{(s')} = q^{-\vec\alpha_{i(s)} \vec\alpha_{i(s')}} \psi^{(s')}\psi^{(s)}, & \chi^{(s)}\chi^{(s')} = q^{-\vec\alpha_{i(s)}\vec\alpha_{i(s')}} \chi^{(s')}\chi^{(s)}& {\rm for} \ s<s', \\ q^{\vec h\vec\phi}\psi^{(s)} = q^{\vec h\vec\alpha_{i(s)}} \psi^{(s)}q^{\vec h\vec\phi}, & q^{\vec h\vec\phi}\chi^{(s)} = q^{\vec h \vec\alpha_{i(s)}}\chi^{(s)}q^{\vec h\vec\phi}, & \\ &\psi^{(s)} \chi^{(s')} = \chi^{(s')}\psi^{(s)} & {\rm for\ any}\ s,s'.Wearguethatthe We argue that the d_Gparametricmanifoldwhich-parametric ``manifold'' which gspansintheoperatorvalueduniversalenveloppingalgebra,canalsobeinvariantunderthegroupmultiplication spans in the operator-valued universal envelopping algebra, can also be invariant under the group multiplication g \rightarrow g'\cdot g''.Theuniversal. The universal {\cal R}matrixwiththepropertythat-matrix with the property that {\cal R} (g\otimes I)(I\otimes g) = (I\otimes g)(g\otimes I){\cal R}isgivenbytheusualformula is given by the usual formula R=qijrGαi2αj2(αα)ij1HiHjα>0dBEqα((qαqα1)TαTα).{\cal R} = q^{-\sum_{ij}^{r_G}||\vec\alpha_i||^2|| \vec\alpha_j||^2 (\vec\alpha\vec\alpha)^{-1}_{ij}H_i \otimes H_j}\prod_{ \vec\alpha > 0}^{d_B}{\cal E}_{q_{\vec\alpha}}\left(-(q_{\vec\alpha}- q_{\vec\alpha}^{-1})T_{\vec\alpha}\otimes T_{-\vec\alpha}\right).$Comment: 68 page

    Quantum Double and Differential Calculi

    Full text link
    We show that bicovariant bimodules as defined by Woronowicz are in one to one correspondence with the Drinfeld quantum double representations. We then prove that a differential calculus associated to a bicovariant bimodule of dimension n is connected to the existence of a particular (n+1)--dimensional representation of the double. An example of bicovariant differential calculus on the non quasitriangular quantum group E_q(2) is developed. The construction is studied in terms of Hochschild cohomology and a correspondence between differential calculi and 1-cocycles is proved. Some differences of calculi on quantum and finite groups with respect to Lie groups are stressed.Comment: Revised version with added cohomological analysis. 14 pages, plain te

    Quantum planes and quantum cylinders from Poisson homogeneous spaces

    Get PDF
    Quantum planes and a new quantum cylinder are obtained as quantization of Poisson homogeneous spaces of two different Poisson structures on classical Euclidean group E(2).Comment: 13 pages, plain Tex, no figure

    Green function on the quantum plane

    Full text link
    Green function (which can be called the q-analogous of the Hankel function) on the quantum plane E_q^2= E_q(2)/U(1) is constructed.Comment: 8 page

    Examples of q-regularization

    Get PDF
    An Introduction to Hopf algebras as a tool for the regularization of relavent quantities in quantum field theory is given. We deform algebraic spaces by introducing q as a regulator of a non-commutative and non-cocommutative Hopf algebra. Relevant quantities are finite provided q\neq 1 and diverge in the limit q\rightarrow 1. We discuss q-regularization on different q-deformed spaces for \lambda\phi^4 theory as example to illustrate the idea.Comment: 17 pages, LaTex, to be published in IJTP 1995.1
    corecore