11,651 research outputs found
Simple “Market Value” Bargaining Model for Weighted Voting Games: Characterization and Limit Theorems
Feld, Grofman and Ray (2003) offer a bargaining model for weighted voting games that is a close relative of the nucleolus and the kernel. They look for a set of weights that preserves winning coalitions that has the property of minimizing the difference between the weight of the smallest and the weight of the largest Minimum Winning Coalition. They claim that such a set of weights provides an a priori measure of a weighted voter’s bribeworthiness or market
value. Here, after reviewing the basic elements of their model, we provide a
characterization result for this model and show its links to other bargaining model
approaches in the literature. Then we offer some limit results showing that, with certain reasonable conditions on the distributions of weights, as the size of the voting body increases, the values of bribeworthiness we calculate will approach both the weights themselves and the Banzhaf scores for the weighted voting game. We also show that, even for relatively small groups using weighted voting, such as the membership of the European Council of Ministers (and its
precedessors) 1958-2003, similarities among the usual a priori power scores,
bribeworthiness/market value, and the weights themselves, will be quite strong
Efficient Immunization Strategies for Computer Networks and Populations
We present an effective immunization strategy for computer networks and
populations with broad and, in particular, scale-free degree distributions. The
proposed strategy, acquaintance immunization, calls for the immunization of
random acquaintances of random nodes (individuals). The strategy requires no
knowledge of the node degrees or any other global knowledge, as do targeted
immunization strategies. We study analytically the critical threshold for
complete immunization. We also study the strategy with respect to the
susceptible-infected-removed epidemiological model. We show that the
immunization threshold is dramatically reduced with the suggested strategy, for
all studied cases.Comment: Revtex, 5 pages, 4 ps fig
A two-dimensional Fermi liquid with attractive interactions
We realize and study an attractively interacting two-dimensional Fermi
liquid. Using momentum resolved photoemission spectroscopy, we measure the
self-energy, determine the contact parameter of the short-range interaction
potential, and find their dependence on the interaction strength. We
successfully compare the measurements to a theoretical analysis, properly
taking into account the finite temperature, harmonic trap, and the averaging
over several two-dimensional gases with different peak densities
Scale invariance and viscosity of a two-dimensional Fermi gas
We investigate the collective excitations of a harmonically trapped
two-dimensional Fermi gas from the collisionless (zero sound) to the
hydrodynamic (first sound) regime. The breathing mode, which is sensitive to
the equation of state, is observed at a frequency two times the dipole mode
frequency for a large range of interaction strengths and temperatures, and the
amplitude of the breathing mode is undamped. This provides evidence for a
dynamical SO(2,1) scaling symmetry of the two-dimensional Fermi gas. Moreover,
we investigate the quadrupole mode to measure the shear viscosity of the
two-dimensional gas and study its temperature dependence
Validation of Kalman Filter alignment algorithm with cosmic-ray data using a CMS silicon strip tracker endcap
A Kalman Filter alignment algorithm has been applied to cosmic-ray data. We
discuss the alignment algorithm and an experiment-independent implementation
including outlier rejection and treatment of weakly determined parameters.
Using this implementation, the algorithm has been applied to data recorded with
one CMS silicon tracker endcap. Results are compared to both photogrammetry
measurements and data obtained from a dedicated hardware alignment system, and
good agreement is observed.Comment: 11 pages, 8 figures. CMS NOTE-2010/00
Decentralization in Bitcoin and Ethereum Networks
Blockchain-based cryptocurrencies have demonstrated how to securely implement
traditionally centralized systems, such as currencies, in a decentralized
fashion. However, there have been few measurement studies on the level of
decentralization they achieve in practice. We present a measurement study on
various decentralization metrics of two of the leading cryptocurrencies with
the largest market capitalization and user base, Bitcoin and Ethereum. We
investigate the extent of decentralization by measuring the network resources
of nodes and the interconnection among them, the protocol requirements
affecting the operation of nodes, and the robustness of the two systems against
attacks. In particular, we adapted existing internet measurement techniques and
used the Falcon Relay Network as a novel measurement tool to obtain our data.
We discovered that neither Bitcoin nor Ethereum has strictly better properties
than the other. We also provide concrete suggestions for improving both
systems.Comment: Financial Cryptography and Data Security 201
Observation of sub-Poisson photon statistics in the cavity-QED microlaser
We have measured the second-order correlation function of the cavity-QED
microlaser output and observed a transition from photon bunching to
antibunching with increasing average number of intracavity atoms. The observed
correlation times and the transition from super- to sub-Poisson photon
statistics can be well described by gain-loss feedback or enhanced/reduced
restoring action against fluctuations in photon number in the context of a
quantum microlaser theory and a photon rate equation picture. However, the
theory predicts a degree of antibunching several times larger than that
observed, which may indicate the inadequacy of its treatment of atomic velocity
distributions.Comment: 4 pages, 4 figure
Experimental Studies Towards a DC-DC Conversion Powering Scheme for the CMS Silicon Strip Tracker at SLHC
The upgrade of the CMS silicon tracker for the Super-LHC presents many challenges. The distribution of power to the tracker is considered particularly difficult, as the tracker power consumption is expected to be similar to or higher than today, while the operating voltage will decrease and power cables cannot be exchanged or added. The CMS tracker has adopted parallel powering with DC-DC conversion as the baseline solution to the powering problem. In this paper, experimental studies of such a DC-DC conversion powering scheme are presented, including system test measurements with custom DC-DC converters and current strip tracker structures, studies of the detector susceptibility to conductive noise, and simulations of the effect of novel powering schemes on the strip tracker material budget
Observation of a pairing pseudogap in a two-dimensional Fermi gas
Pairing of fermions is ubiquitous in nature and it is responsible for a large
variety of fascinating phenomena like superconductivity, superfluidity of
He, the anomalous rotation of neutron stars, and the BEC-BCS crossover in
strongly interacting Fermi gases. When confined to two dimensions, interacting
many-body systems bear even more subtle effects, many of which lack
understanding at a fundamental level. Most striking is the, yet unexplained,
effect of high-temperature superconductivity in cuprates, which is intimately
related to the two-dimensional geometry of the crystal structure. In
particular, the questions how many-body pairing is established at high
temperature and whether it precedes superconductivity are crucial to be
answered. Here, we report on the observation of pairing in a harmonically
trapped two-dimensional atomic Fermi gas in the regime of strong coupling. We
perform momentum-resolved photoemission spectroscopy, analogous to ARPES in the
solid state, to measure the spectral function of the gas and we detect a
many-body pairing gap above the superfluid transition temperature. Our
observations mark a significant step in the emulation of layered
two-dimensional strongly correlated superconductors using ultracold atomic
gases
ATLAS silicon module assembly and qualification tests at IFIC Valencia
ATLAS experiment, designed to probe the interactions of particles emerging
out of proton proton collisions at energies of up to 14 TeV, will assume
operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper
discusses the assembly and the quality control tests of forward detector
modules for the ATLAS silicon microstrip detector assembled at the Instituto de
Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures
are outlined and the laboratory equipment is briefly described. Emphasis is
given on the module quality achieved in terms of mechanical and electrical
stability.Comment: 23 pages, 38 EPS figures, uses JINST LaTeX clas
- …
