3,851 research outputs found
Dynamic Normalization for Compact Binary Coalescence Searches in Non-Stationary Noise
The output of gravitational-wave interferometers, such as LIGO and Virgo, can be highly non-stationary. Broadband detector noise can affect the detector sensitivity on the order of tens of seconds. Gravitational-wave transient searches, such as those for colliding black holes, estimate this noise in order to identify gravitational-wave events. During times of non-stationarity we see a higher rate of false events being reported. To accurately separate signal from noise, it is imperative to incorporate the changing detector state into gravitational-wave searches. We develop a new statistic which estimates the variation of the interferometric detector noise. We use this statistic to re-rank candidate events identified during LIGO-Virgo's second observing run by the PyCBC search pipeline. This results in a 7% improvement in the sensitivity volume for low mass binaries, particularly binary neutron stars mergers
The c-terminal extension of a hybrid immunoglobulin A/G heavy chain is responsible for its Golgi-mediated sorting to the vacuole
We have assessed the ability of the plant secretory pathway to handle the expression of complex heterologous proteins by investigating the fate of a hybrid immunoglobulin A/G in tobacco cells. Although plant cells can express large amounts of the antibody, a relevant proportion is normally lost to vacuolar sorting and degradation. Here we show that the synthesis of high amounts of IgA/G does not impose stress on the plant secretory pathway. Plant cells can assemble antibody chains with high efficiency and vacuolar transport occurs only after the assembled immunoglobulins have traveled through the Golgi complex. We prove that vacuolar delivery of IgA/G depends on the presence of a cryptic sorting signal in the tailpiece of the IgA/G heavy chain. We also show that unassembled light chains are efficiently secreted as monomers by the plant secretory pathway
Improving the Sensitivity of Advanced LIGO Using Noise Subtraction
This paper presents an adaptable, parallelizable method for subtracting
linearly coupled noise from Advanced LIGO data. We explain the features
developed to ensure that the process is robust enough to handle the variability
present in Advanced LIGO data. In this work, we target subtraction of noise due
to beam jitter, detector calibration lines, and mains power lines. We
demonstrate noise subtraction over the entirety of the second observing run,
resulting in increases in sensitivity comparable to those reported in previous
targeted efforts. Over the course of the second observing run, we see a 30%
increase in Advanced LIGO sensitivity to gravitational waves from a broad range
of compact binary systems. We expect the use of this method to result in a
higher rate of detected gravitational-wave signals in Advanced LIGO data.Comment: 15 pages, 6 figure
Large-Scale Image Processing with the ROTSE Pipeline for Follow-Up of Gravitational Wave Events
Electromagnetic (EM) observations of gravitational-wave (GW) sources would
bring unique insights into a source which are not available from either channel
alone. However EM follow-up of GW events presents new challenges. GW events
will have large sky error regions, on the order of 10-100 square degrees, which
can be made up of many disjoint patches. When searching such large areas there
is potential contamination by EM transients unrelated to the GW event.
Furthermore, the characteristics of possible EM counterparts to GW events are
also uncertain. It is therefore desirable to be able to assess the statistical
significance of a candidate EM counterpart, which can only be done by
performing background studies of large data sets. Current image processing
pipelines such as that used by ROTSE are not usually optimised for large-scale
processing. We have automated the ROTSE image analysis, and supplemented it
with a post-processing unit for candidate validation and classification. We
also propose a simple ad hoc statistic for ranking candidates as more likely to
be associated with the GW trigger. We demonstrate the performance of the
automated pipeline and ranking statistic using archival ROTSE data. EM
candidates from a randomly selected set of images are compared to a background
estimated from the analysis of 102 additional sets of archival images. The
pipeline's detection efficiency is computed empirically by re-analysis of the
images after adding simulated optical transients that follow typical light
curves for gamma-ray burst afterglows and kilonovae. We show that the automated
pipeline rejects most background events and is sensitive to simulated
transients to limiting magnitudes consistent with the limiting magnitude of the
images
Statistical Communication Theory
Contains research objectives and reports on three research projects
Розробка модуля Ethernet контролю для дистанційного керування електроживильною установкою
Sound processing in the inner ear involves separation of the constituent frequencies along the length of the cochlea. Frequencies relevant to human speech (100 to 500 Hz) are processed in the apex region. Among mammals, the guinea pig cochlear apex processes similar frequencies and is thus relevant for the study of speech processing in the cochlea. However, the requirement for extensive surgery has challenged the optical accessibility of this area to investigate cochlear processing of signals without significant intrusion. A simple method is developed to provide optical access to the guinea pig cochlear apex in two directions with minimal surgery. Furthermore, all prior vibration measurements in the guinea pig apex involved opening an observation hole in the otic capsule, which has been questioned on the basis of the resulting changes to cochlear hydrodynamics. Here, this limitation is overcome by measuring the vibrations through the unopened otic capsule using phase-sensitive Fourier domain optical coherence tomography. The optically and surgically advanced method described here lays the foundation to perform minimally invasive investigation of speech-related signal processing in the cochlea. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.Funding Agencies|NIH NIDCD [R01DC000141]; NIH [R01DC004554, R01DC010201, R01DC011796]; Swedish Research Council [K2014-63X-14061-14-5]; Torsten Soderberg Foundation</p
Electromagnetic follow-up of gravitational wave transient signal candidates
Pioneering efforts aiming at the development of multi-messenger gravitational
wave and electromagnetic astronomy have been made. An electromagnetic
observation follow-up program of candidate gravitational wave events has been
performed (Dec 17 2009 to Jan 8 2010 and Sep 4 to Oct 20 2010) during the
recent runs of the LIGO and Virgo gravitational wave detectors. It involved
ground-based and space electromagnetic facilities observing the sky at optical,
X-ray and radio wavelengths. The joint gravitational wave and electromagnetic
observation study requires the development of specific image analysis
procedures able to discriminate the possible electromagnetic counterpart of
gravitational wave triggers from contaminant/background events. The paper
presents an overview of the electromagnetic follow-up program and the image
analysis procedures.Comment: Proceedings of the 12th International Conference on "Topics in
Astroparticle and Underground Physics" (TAUP 2011), Munich, September 2011
(to appear in IoP Journal of Physics: Conference Series
Cost-benefit analysis for commissioning decisions in GEO600
Gravitational wave interferometers are complex instruments, requiring years
of commissioning to achieve the required sensitivities for the detection of
gravitational waves, of order 10^-21 in dimensionless detector strain, in the
tens of Hz to several kHz frequency band. Investigations carried out by the
GEO600 detector characterisation group have shown that detector
characterisation techniques are useful when planning for commissioning work. At
the time of writing, GEO600 is the only large scale laser interferometer
currently in operation running with a high duty factor, 70%, limited chiefly by
the time spent commissioning the detector. The number of observable
gravitational wave sources scales as the product of the volume of space to
which the detector is sensitive and the observation time, so the goal of
commissioning is to improve the detector sensitivity with the least possible
detector down time. We demonstrate a method for increasing the number of
sources observable by such a detector, by assessing the severity of
non-astrophysical noise contaminations to efficiently guide commissioning. This
method will be particularly useful in the early stages and during the initial
science runs of the aLIGO and adVirgo detectors, as they are brought up to
design performance.Comment: 17 pages, 17 figures, 2 table
- …
