612 research outputs found

    Clinical case seminar - Hypogonadotropic hypogonadism as a presenting feature of late-onset X-linked adrenal hypoplasia congenita

    Get PDF
    Mutations in the orphan nuclear receptor DAX-1 cause X-linked adrenal hypoplasia congenita. Affected boys usually present with primary adrenal failure in early infancy or childhood. Impaired sexual development because of hypogonadotropic hypogonadism becomes apparent at the time of puberty. We report adult-onset adrenal hypoplasia congenita in a patient who presented with hypogonadism at 28 yr of age. Although he had no clinical evidence of adrenal dysfunction, compensated primary adrenal failure was diagnosed by biochemical testing. Semen analysis showed azoospermia, and he did not achieve fertility after 8 months of treatment with gonadotropins. A novel Y380D DAX-1 missense mutation, which causes partial loss of function in transient gene expression assays, was found in this patient. This case demonstrates that partial loss-of-function mutations in DAX1 can present with hypogonadotropic hypogonadism and covert adrenal failure in adulthood. Further, an important role for DAX-1 in spermatogenesis in humans is confirmed, supporting findings in the Dax1 (Ahch) knockout mouse

    From Endoderm to Progenitors : An Update on the Early Steps of Thyroid Morphogenesis in the Zebrafish

    Get PDF
    The mechanisms underlying thyroid gland development have a central interest in biology and this review is aimed to provide an update on the recent advancements on the early steps of thyroid differentiation that were obtained in the zebrafish, because this teleost fish revealed to be a suitable organism to study the early developmental stages. Physiologically, the thyroid precursors fate is delineated by the appearance among the endoderm cells of the foregut of a restricted cell population expressing specific transcription factors, including pax2a, nkx2.4b, and hhex. The committed thyroid primordium first appears as a thickening of the pharyngeal floor of the anterior endoderm, that subsequently detaches from the floor and migrates to its final location where it gives rise to the thyroid hormone-producing follicles. At variance with mammalian models, thyroid precursor differentiation in zebrafish occurs early during the developmental process before the dislocation to the eutopic positioning of thyroid follicles. Several pathways have been implicated in these early events and nowadays there is evidence of a complex crosstalk between intrinsic (coming from the endoderm and thyroid precursors) and extrinsic factors (coming from surrounding tissues, as the cardiac mesoderm) whose organization in time and space is probably required for the proper thyroid development. In particular, Notch, Shh, Fgf, Bmp, and Wnt signaling seems to be required for the commitment of endodermal cells to a thyroid fate at specific developmental windows of zebrafish embryo. Here, we summarize the recent findings produced in the various zebrafish experimental models with the aim to define a comprehensive picture of such complicated puzzle

    Optimizing Fertility in Primary Ovarian Insufficiency : Case Report and Literature Review

    Get PDF
    Primary ovarian insufficiency (POI) is a clinical spectrum of ovarian dysfunction. Overt POI presents with oligo/amenorrhea and hypergonadotropic hypogonadism before age 40 years. Overt POI involves chronic health problems to include increased morbidity and mortality related to estradiol deficiency and the associated osteoporosis and cardiovascular disease as well as psychological and psychiatric disorders related to the loss of reproductive hormones and infertility. Presently, with standard clinical testing, a mechanism for Overt POI can only be identified in about 10% of cases. Now discovery of new mechanisms permits an etiology to be identified in a research setting in 25–30% of overt cases. The most common genetic cause of Overt POI is premutation in FMR1. The associated infertility is life altering. Oocyte donation is effective, although many women prefer to conceive with their own ova. Surprisingly, the majority who have Overt POI still have detectable ovarian follicles (70%). The major mechanism of follicle dysfunction in Overt POI has been histologically defined by a prospective NIH study: inappropriate follicle luteinization due to the tonically elevated serum LH levels. A trial of physiologic hormone replacement therapy, clinically proven to suppress the elevated LH levels in these women, may improve follicle function and increase the chance of ovulation. Here, we report the case of a woman with Overt POI diagnosed at age 35 years. To attempt pregnancy, she elected a trial of intrauterine insemination (IUI) in conjunction with follicle monitoring and physiologic hormone replacement therapy. She conceived on the eighth cycle of treatment and delivered a healthy baby. Our report calls for a concerted effort to define the best methods by which to optimize fertility for women who have POI

    Clinical and Genetic Features of a Large Monocentric Series of Familial Non-Medullary Thyroid Cancers

    Get PDF
    Several low penetration susceptibility risk loci or genes have been proposed in recent years with a possible causative role for familial non-medullary thyroid cancer (FNMTC), though the results are still not conclusive or reliable. Among all the candidates, here fully reviewed, a new extremely rare germline variant c.3607A>G (p.Y1203H) of the DUOX2 gene, has been recently reported to co-segregate with the affected members of one non-syndromic FNMTC family. We aimed to validate this finding in our series of 33 unrelated FNMTC Italian families, previously found to be negative for two susceptibility germline variants in the HABP2 and MAP2K5 genes. Unfortunately, the DUOX2 p.Y1203H variant was not found in either the 74 affected or the 12 not affected family members of our series. We obtained interesting data by comparing the clinico-pathological data of the affected members of our kindreds with a large consecutive series of sporadic cases, followed at our site. We found that familial tumors had a statistically significant more aggressive presentation at diagnosis, though not resulting in a worst outcome. In conclusion, we report genetic and clinical data in a large series of FNMTC kindreds. Our families are negative for variants reported as likely causative, namely those lying in the HABP2, MAP2K5 and DUOX2 genes. The extensive review of the current knowledge on the genetic risk factors for non-syndromic FNMTCs underlies how the management of these tumors remains mainly clinical. Despite the more aggressive presentation of familial cases, an appropriate treatment leads to an outcome similar to that observed for sporadic cases

    How zebrafish research has helped in understanding thyroid diseases

    Get PDF
    Next-generation sequencing technologies have revolutionized the identification of disease-causing genes, accelerating the discovery of new mutations and new candidate genes for thyroid diseases. To face this flow of novel genetic information, it is important to have suitable animal models to study the mechanisms regulating thyroid development and thyroid hormone availability and activity. Zebrafish ( Danio rerio), with its rapid external embryonic development, has been extensively used in developmental biology. To date, almost all of the components of the zebrafish thyroid axis have been characterized and are structurally and functionally comparable with those of higher vertebrates. The availability of transgenic fluorescent zebrafish lines allows the real-time analysis of thyroid organogenesis and its alterations. Transient morpholino-knockdown is a solution to silence the expression of a gene of interest and promptly obtain insights on its contribution during the development of the zebrafish thyroid axis. The recently available tools for targeted stable gene knockout have further increased the value of zebrafish to the study of thyroid disease. All of the reported zebrafish models can also be used to screen small compounds and to test new drugs and may allow the establishment of experimental proof of concept to plan subsequent clinical trials

    Multiple endocrine neoplasia type 2 syndromes (MEN 2): results from the ItaMEN network analysis on the prevalence of different genotypes and phenotypes.

    Get PDF
    OBJECTIVE: Multiple endocrine neoplasia type 2 (MEN 2) is a genetic disease characterized by medullary thyroid carcinoma (MTC) associated (MEN 2A and 2B) or not familial MTC (FMTC) with other endocrine neoplasia due to germline RET gene mutations. The prevalence of these rare genetic diseases and their corresponding RET mutations are unknown due to the small size of the study population. METHODS: We collected data on germline RET mutations of 250 families with hereditary MTC followed in 20 different Italian centres. RESULTS AND CONCLUSIONS: The most frequent RET amino acid substitution was Val804Met (19.6%) followed by Cys634Arg (13.6%). A total of 40 different germline RET mutations were present. Six families (2.4%) were negative for germline RET mutations. The comparison of the prevalence of RET germline mutations in the present study with those published by other European studies showed a higher prevalence of Val804Met and Ser891Ala mutations and a lower prevalence of Leu790Phe and Tyr791Phe (P<0.0001). A statistically significant higher prevalence of mutations affecting non-cysteine codons was also found (P<0.0001). Furthermore, the phenotype data collection showed an unexpected higher prevalence of FMTC (57.6%) with respect to other MEN 2 syndromes (34% MEN 2A and 6.8% of MEN 2B). In conclusion, we observed a statistically significant different pattern of RET mutations in Italian MEN 2 families with respect to other European studies and a higher prevalence of FMTC phenotype. The different ethnic origins of the patients and the particular attention given to analysing apparently sporadic MTC for RET germline mutations may explain these findings

    Factors influencing the levothyroxine dose in the hormone replacement therapy of primary hypothyroidism in adults

    Get PDF
    Levothyroxine (LT4) is a safe, effective means of hormone replacement therapy for hypothyroidism. Here, we review the pharmaceutical, pathophysiological and behavioural factors influencing the absorption, distribution, metabolism and excretion of LT4. Any factor that alters the state of the epithelium in the stomach or small intestine will reduce and/or slow absorption of LT4; these include ulcerative colitis, coeliac disease, bariatric surgery, Helicobacter pylori infection, food intolerance, gastritis, mineral supplements, dietary fibre, resins, and various drugs. Once in the circulation, LT4 is almost fully bound to plasma proteins. Although free T4 (FT4) and liothyronine concentrations are extensively buffered, it is possible that drug- or disorder-induced changes in plasma proteins levels can modify free hormone levels. The data on the clinical significance of genetic variants in deiodinase genes are contradictory, and wide-scale genotyping of hypothyroid patients is not currently justified. We developed a decision tree for the physician faced with an abnormally high thyroid-stimulating hormone (TSH) level in a patient reporting adequate compliance with the recommended LT4 dose. The physician should review medications, the medical history and the serum FT4 level and check for acute adrenal insufficiency, heterophilic anti-TSH antibodies, antibodies against gastric and intestinal components (gastric parietal cells, endomysium, and tissue transglutaminase 2), and Helicobacter pylori infection. The next step is an LT4 pharmacodynamic absorption test; poor LT4 absorption should prompt a consultation with a gastroenterologist and (depending on the findings) an increase in the LT4 dose level. An in-depth etiological investigation can reveal visceral disorders and, especially, digestive tract disorders
    corecore