61,293 research outputs found
Leakage-current properties of encapsulants
A theoretical modeling of leakage current in ethylene vinyl acetate (EVA) and polyvinyl butyral (PVB) modules is being developed and is described. The modeling effort derives mathematical relationships for the bulk and surface conductivites of EVA and PVB, the surface conductivities of glass and polymeric films, and the EVA and PVB pottants, all as functions of environmental parameters. Results from the modeling indicate that for glass/EVA, the glass surface controls the interfacial conductivity, although EVA bulk conductivity controls total leakage current. For PVB/glass, the interface conductivity controls leakage currents for relative humidity (RH) less than 40 to 50%, but PVB bulk conductivity controls leakage current above 50% RH
Quantum ether: photons and electrons from a rotor model
We give an example of a purely bosonic model -- a rotor model on the 3D cubic
lattice -- whose low energy excitations behave like massless U(1) gauge bosons
and massless Dirac fermions. This model can be viewed as a ``quantum ether'': a
medium that gives rise to both photons and electrons. It illustrates a general
mechanism for the emergence of gauge bosons and fermions known as ``string-net
condensation.'' Other, more complex, string-net condensed models can have
excitations that behave like gluons, quarks and other particles in the standard
model. This suggests that photons, electrons and other elementary particles may
have a unified origin: string-net condensation in our vacuum.Comment: 10 pages, 6 figures, RevTeX4. Home page http://dao.mit.edu/~we
Quantum orders in an exact soluble model
We find all the exact eigenstates and eigenvalues of a spin-1/2 model on
square lattice: . We show
that the ground states for have different quantum orders
described by Z2A and Z2B projective symmetry groups. The phase transition at
represents a new kind of phase transitions that changes quantum orders
but not symmetry. Both the Z2A and Z2B states are described by lattice
gauge theories at low energies. They have robust topologically degenerate
ground states and gapless edge excitations.Comment: 4 pages, RevTeX4, More materials on topological/quantum orders and
quantum computing can be found in http://dao.mit.edu/~we
The effects on topic familiarity on online search behaviour and use of relevance criteria
This paper presents an experimental study on the effect of topic familiarity on the assessment behaviour of online searchers. In particular we investigate the effect of topic familiarity on the resources and relevance criteria used by searchers. Our results indicate that searching on an unfamiliar topic leads to use of more generic and fewer specialised resources and that searchers employ different relevance criteria when searching on less familiar topics
Translation-symmetry protected topological orders on lattice
In this paper we systematically study a simple class of translation-symmetry
protected topological orders in quantum spin systems using slave-particle
approach. The spin systems on square lattice are translation invariant, but may
break any other symmetries. We consider topologically ordered ground states
that do not spontaneously break any symmetry. Those states can be described by
Z2A or Z2B projective symmetry group. We find that the Z2A translation
symmetric topological orders can still be divided into 16 sub-classes
corresponding to 16 new translation-symmetry protected topological orders. We
introduced four topological indices at , , , to characterize those 16 new
topological orders. We calculated the topological degeneracies and crystal
momenta for those 16 topological phases on even-by-even, even-by-odd,
odd-by-even, and odd-by-odd lattices, which allows us to physically measure
such topological orders. We predict the appearance of gapless fermionic
excitations at the quantum phase transitions between those symmetry protected
topological orders. Our result can be generalized to any dimensions. We find
256 translation-symmetry protected Z2A topological orders for a system on 3D
lattice
Lensing clusters of galaxies in the SDSS-III
We identify new strong lensing clusters of galaxies from the Sloan Digital
Sky Survey III (SDSS DR8) by visually inspecting color images of a large sample
of clusters of galaxies. We find 68 new clusters showing giant arcs in addition
to 30 known lensing systems. Among 68 cases, 13 clusters are "almost certain"
lensing systems with tangential giant arcs, 22 clusters are "probable" and 31
clusters are "possible" lensing systems. We also find two exotic systems with
blue rings. The giant arcs have angular separations of 2.0"-25.7" from the
bright central galaxies. We note that the rich clusters are more likely to be
lensing systems, and the separations between arcs and the central galaxies
increase with cluster richness.Comment: 13 pages, 6 figures, 1 table; accepted for publication in RAA,
corrected typo
- …
