1,367 research outputs found
Asymptotic freedom in a scalar field theory on the lattice
An alternative model to the trivial -theory of the standard model of
weak interactions is suggested, which embodies the Higgs-mechanism, but is free
of the conceptual problems of standard -theory. We propose a
N-component, O(N)-symmetric scalar field theory, which is originally defined on
the lattice. The model can be motivated from SU(2) gauge theory. Thereby the
scalar field arises as a gauge invariant degree of freedom. The scalar lattice
model is analytically solved in the large N limit. The continuum limit is
approached via an asymptotically free scaling. The renormalized theory evades
triviality, and furthermore gives rise to a dynamically formed mass of the
scalar particle.Comment: 10 pages, LaTeX, one figure and a motivation for the particular type
of action adde
Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models
Relativistic heavy ion collisions are studied assuming that particles can be
described by a hadron gas in thermal and chemical equilibrium. The exact
conservation of baryon number, strangeness and charge are explicitly taken into
account. For heavy ions the effect arising from the neutron surplus becomes
important and leads to a substantial increase in e.g. the ratio.
A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure
Centimetre continuum emission from young stellar objects in Cederblad 110
The low-mass star formation region associated with the reflection nebula
Cederblad 110 in the Chamaeleon I cloud was mapped with the Australian
Telescope Compact Array (ATCA) at 6 and 3.5cm. Altogether 11 sources were
detected, three of which are previously known low mass young stellar objects
associated with the nebula: the illuminating star IRS2 (Class III, Einstein
X-ray source CHX7), the brightest far-infrared source IRS4 (Class I), and the
weak X-ray source CHX10a (Class III). The other young stellar objects in the
region, including the Class 0 protostar candidate Cha-MMS1, were not detected.
The radio spectral index of IRS4 (alpha = 1.7 +/- 0.3) is consistent with
optically thick free-free emission arising from a dense ionized region,
probably a jet-induced shock occurring in the circumstellar material. As the
only Class I protostar with a 'thermal jet' IRS4 is the strongest candidate for
the central source of the molecular outflow found previously in the region. The
emission from IRS2 has a flat spectrum (alpha = 0.05 +/- 0.05) but shows no
sign of polarization, and therefore its origin is likely to be optically thin
free-free emission either from ionized wind or a collimated jet. The strongest
source detected in this survey is a new compact object with a steep negative
spectral index (-1.1) and a weak linear polarization (about 2 %), which
probably represents a background radio galaxy.Comment: 7 pages, 2 Postscript figures. Accepted for publication in Astronomy
& Astrophysic
The Primordial Gravitational Wave Background in String Cosmology
We find the spectrum P(w)dw of the gravitational wave background produced in
the early universe in string theory. We work in the framework of String Driven
Cosmology, whose scale factors are computed with the low-energy effective
string equations as well as selfconsistent solutions of General Relativity with
a gas of strings as source. The scale factor evolution is described by an early
string driven inflationary stage with an instantaneous transition to a
radiation dominated stage and successive matter dominated stage. This is an
expanding string cosmology always running on positive proper cosmic time. A
careful treatment of the scale factor evolution and involved transitions is
made. A full prediction on the power spectrum of gravitational waves without
any free-parameters is given. We study and show explicitly the effect of the
dilaton field, characteristic to this kind of cosmologies. We compute the
spectrum for the same evolution description with three differents approachs.
Some features of gravitational wave spectra, as peaks and asymptotic
behaviours, are found direct consequences of the dilaton involved and not only
of the scale factor evolution. A comparative analysis of different treatments,
solutions and compatibility with observational bounds or detection perspectives
is made.Comment: LaTeX, 50 pages with 2 figures. Uses epsfig and psfra
Matrix models as solvable glass models
We present a family of solvable models of interacting particles in high
dimensionalities without quenched disorder. We show that the models have a
glassy regime with aging effects. The interaction is controlled by a parameter
. For we obtain matrix models and for `tensor' models. We
concentrate on the cases which we study analytically and numerically.Comment: 10 pages + 2 figures, Univ.Roma I, 1038/94, ROM2F/94/2
On the relation between effective supersymmetric actions in different dimensions
We make two remarks: (i) Renormalization of the effective charge in a
4--dimensional (supersymmetric) gauge theory is determined by the same graphs
and is rigidly connected to the renormalization of the metric on the moduli
space of the classical vacua of the corresponding reduced quantum mechanical
system. Supersymmetry provides constraints for possible modifications of the
metric, and this gives us a simple proof of nonrenormalization theorems for the
original 4-dimensional theory. (ii) We establish a nontrivial relationship
between the effective (0+1)-dimensional and (1+1)-dimensional Lagrangia (the
latter represent conventional
Kahlerian sigma models).Comment: 15 pages, 2 figure
Effective action and semiclassical limit of spin foam models
We define an effective action for spin foam models of quantum gravity by
adapting the background field method from quantum field theory. We show that
the Regge action is the leading term in the semi-classical expansion of the
spin foam effective action if the vertex amplitude has the large-spin
asymptotics which is proportional to an exponential function of the vertex
Regge action. In the case of the known three-dimensional and four-dimensional
spin foam models this amounts to modifying the vertex amplitude such that the
exponential asymptotics is obtained. In particular, we show that the ELPR/FK
model vertex amplitude can be modified such that the new model is finite and
has the Einstein-Hilbert action as its classical limit. We also calculate the
first-order and some of the second-order quantum corrections in the
semi-classical expansion of the effective action.Comment: Improved presentation, 2 references added. 15 pages, no figure
Reconstruction of source location in a network of gravitational wave interferometric detectors
This paper deals with the reconstruction of the direction of a gravitational
wave source using the detection made by a network of interferometric detectors,
mainly the LIGO and Virgo detectors. We suppose that an event has been seen in
coincidence using a filter applied on the three detector data streams. Using
the arrival time (and its associated error) of the gravitational signal in each
detector, the direction of the source in the sky is computed using a chi^2
minimization technique. For reasonably large signals (SNR>4.5 in all
detectors), the mean angular error between the real location and the
reconstructed one is about 1 degree. We also investigate the effect of the
network geometry assuming the same angular response for all interferometric
detectors. It appears that the reconstruction quality is not uniform over the
sky and is degraded when the source approaches the plane defined by the three
detectors. Adding at least one other detector to the LIGO-Virgo network reduces
the blind regions and in the case of 6 detectors, a precision less than 1
degree on the source direction can be reached for 99% of the sky.Comment: Accepted in Phys. Rev.
- …
