1,501 research outputs found
Vibrational spectrum of solid picene (C_22H_14)
Recently, Mitsuhashi et al., have observed superconductivity with transition
temperature up to 18 K in potassium doped picene (C22H14), a polycyclic
aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis
indicate the importance of electron-phonon coupling in the superconducting
mechanisms of these systems, with different emphasis on inter- and
intra-molecular vibrations, depending on the approximations used. Here we
present a combined experimental and ab-initio study of the Raman and infrared
spectrum of undoped solid picene, which allows us to unanbiguously assign the
vibrational modes. This combined study enables the identification of the modes
which couple strongly to electrons and hence can play an important role in the
superconducting properties of the doped samples
A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models
In recent years, advances in computational power and spatial data analysis
(GIS, remote sensing, etc) have led to an increase in attempts to model the
spread and behaviour of wildland fires across the landscape. This series of
review papers endeavours to critically and comprehensively review all types of
surface fire spread models developed since 1990. This paper reviews models of a
physical or quasi-physical nature. These models are based on the fundamental
chemistry and/or physics of combustion and fire spread. Other papers in the
series review models of an empirical or quasi-empirical nature, and
mathematical analogues and simulation models. Many models are extensions or
refinements of models developed before 1990. Where this is the case, these
models are also discussed but much less comprehensively.Comment: 31 pages + 8 pages references + 2 figures + 5 tables. Submitted to
International Journal of Wildland Fir
Quantum tomography, phase space observables, and generalized Markov kernels
We construct a generalized Markov kernel which transforms the observable
associated with the homodyne tomography into a covariant phase space observable
with a regular kernel state. Illustrative examples are given in the cases of a
'Schrodinger cat' kernel state and the Cahill-Glauber s-parametrized
distributions. Also we consider an example of a kernel state when the
generalized Markov kernel cannot be constructed.Comment: 20 pages, 3 figure
Marine sponge-derived polymeric alkylpyridinium salts as a novel tumor chemotherapeutic targeting the cholinergic system in lung tumors
The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice
Dissemination of metastatic cells probably occurs long before diagnosis of the primary tumor. Metastasis during early phases of carcinogenesis in high risk patients is therefore a potential prevention target. The plant polyphenol Curcumin has been proposed for dietary prevention of cancer. We therefore examined its effects on the human breast cancer cell line MDA-MB-231 in vitro and in a mouse metastasis model. Curcumin strongly induces apoptosis in MDA- MB- 231 cells in correlation with reduced activation of the survival pathway NF kappa B, as a consequence of diminished I kappa B and p65 phosphorylation. Curcumin also reduces the expression of major matrix metalloproteinases (MMPs) due to reduced NF kappa B activity and transcriptional downregulation of AP-1. NF kappa B/p65 silencing is sufficient to downregulate c-jun and MMP expression. Reduced NF kappa B/AP-1 activity and MMP expression lead to diminished invasion through a reconstituted basement membrane and to a significantly lower number of lung metastases in immunodeficient mice after intercardiac injection of 231 cells (p=0.0035). 68% of Curcumin treated but only 17% of untreated animals showed no or very few lung metastases, most likely as a consequence of down-regulation of NF kappa B/AP-1 dependent MMP expression and direct apoptotic effects on circulating tumor cells but not on established metastases. Dietary chemoprevention of metastases appears therefore feasible. Copyright (c) 2007 S. Karger AG, Basel
A wildland fire model with data assimilation
A wildfire model is formulated based on balance equations for energy and
fuel, where the fuel loss due to combustion corresponds to the fuel reaction
rate. The resulting coupled partial differential equations have coefficients
that can be approximated from prior measurements of wildfires. An ensemble
Kalman filter technique with regularization is then used to assimilate
temperatures measured at selected points into running wildfire simulations. The
assimilation technique is able to modify the simulations to track the
measurements correctly even if the simulations were started with an erroneous
ignition location that is quite far away from the correct one.Comment: 35 pages, 12 figures; minor revision January 2008. Original version
available from http://www-math.cudenver.edu/ccm/report
A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models
In recent years, advances in computational power and spatial data analysis
(GIS, remote sensing, etc) have led to an increase in attempts to model the
spread and behvaiour of wildland fires across the landscape. This series of
review papers endeavours to critically and comprehensively review all types of
surface fire spread models developed since 1990. This paper reviews models of a
simulation or mathematical analogue nature. Most simulation models are
implementations of existing empirical or quasi-empirical models and their
primary function is to convert these generally one dimensional models to two
dimensions and then propagate a fire perimeter across a modelled landscape.
Mathematical analogue models are those that are based on some mathematical
conceit (rather than a physical representation of fire spread) that
coincidentally simulates the spread of fire. Other papers in the series review
models of an physical or quasi-physical nature and empirical or quasi-empirical
nature. Many models are extensions or refinements of models developed before
1990. Where this is the case, these models are also discussed but much less
comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the
International Journal of Wildland Fir
Systematic Study of the Kaon to Pion Multiplicity Ratios in Heavy-Ion Collisions
We present a systematic study of the kaon to pion multiplicity ratios (K+/pi+
and K-/pi-) in heavy-ion collisions from AGS to RHIC energy using the
Relativistic Quantum Molecular Dynamics (RQMD) model. The model satisfactorily
describes the available experimental data on K+/pi+ and K-/pi-. Within the
model, we find that the strong increase of the ratios with the number of
participants is mainly due to hadronic rescattering of produced mesons with
ingoing baryons and their resonances. The enhancement of K/pi in heavy-ion
collisions with respect to elementary p+p interactions is larger at AGS energy
than SPS energy, and decreases smoothly with bombarding energy. The total
multiplicity ratios at RHIC energy are predicted by RQMD to be K+/pi+ = 0.19
and K-/pi- = 0.15.Comment: 10 pages, 8 figures, RevTeX style. A section is added to discuss
effects of rope formatio
- …
