5,936 research outputs found
A method of predicting flow rates required to achieve anti-icing performance with a porous leading edge ice protection system
An analytical method was developed for predicting minimum flow rates required to provide anti-ice protection with a porous leading edge fluid ice protection system. The predicted flow rates compare with an average error of less than 10 percent to six experimentally determined flow rates from tests in the NASA Icing Research Tunnel on a general aviation wing section
Forecasting and Hedging Crop Input Prices
Replaced with edited version of paper 12/23/08.Farm Management,
Icing tunnel tests of a glycol-exuding porous leading edge ice protection system on a general aviation airfoil
A glycol-exuding porous leading edge ice protection system was tested. Results show that the system is very effective in preventing ice accretion (anti-ice mode) or removing ice from an airfoil. Minimum glycol flow rates required for anti-icing are a function of velocity, liquid water content in the air, ambient temperature, and droplet size. Large ice caps were removed in only a few minutes using anti-ice flow rates. It was found that the shed time is a function of the type of ice, size of the ice cap, angle of attack, and glycol flow rate. Wake survey measurements show that there is no significant drag penalty for the installation or operation of the system tested
Explicit SO(10) Supersymmetric Grand Unified Model for the Higgs and Yukawa Sectors
A complete set of fermion and Higgs superfields is introduced with
well-defined SO(10) properties and U(1) x Z_2 x Z_2 family charges from which
the Higgs and Yukawa superpotentials are constructed. The structures derived
for the four Dirac fermion and right-handed Majorana neutrino mass matrices
coincide with those previously obtained from an effective operator approach.
Ten mass matrix input parameters accurately yield the twenty masses and mixings
of the quarks and leptons with the bimaximal atmospheric and solar neutrino
vacuum solutions favored in this simplest version.Comment: Published version appearing in PRL in which small modifications to
original submission and a paragraph concerning proton decay appea
Resonant leptogenesis in a predictive SO(10) grand unified model
An SO(10) grand unified model considered previously by the authors featuring
lopsided down quark and charged lepton mass matrices is successfully predictive
and requires that the lightest two right-handed Majorana neutrinons be nearly
degenerate in order to obtain the LMA solar neutrino solution. Here we use this
model to test its predictions for baryogenesis through resonant-enhanced
leptogenesis. With the conventional type I seesaw mechanism, the best
predictions for baryogenesis appear to fall a factor of three short of the
observed value. However, with a proposed type III seesaw mechanism leading to
three pairs of massive pseudo-Dirac neutrinos, resonant leptogenesis is
decoupled from the neutrino mass and mixing issues with successful baryogenesis
easily obtained.Comment: 22 pages including 1 figure; published version with reference adde
Evaluation of a pneumatic boot deicing system on a general aviation wing model
The aerodynamic characteristics of a typical modern general aviation airfoil were investigated with and without a pneumatic boot ice protection system. The ice protection effectiveness of the boot was studied. This includes the change in drag on the airfoil with the boot inflated and deflated, the change in drag due to primary and residual ice formation, drag change due to cumulative residual ice formation, and parameters affecting boot effectiveness. Boot performance was not affected by tunnel total temperature or velocity. Marginal effect in performance was associated with angle of attack. Significant effects on performance were caused by variations in droplet size, LWC, ice cap thickness inflation pressure, and surface treatment
Bound-State Model of Weak and Strong Interactions
The pion-nucleon coupling constant is calculated from first principles by use of the N/D matrix method. Three models are introduced which contain pions, nucleons, and weakly interacting intermediate bosons of the scalar, pseudoscalar, and vector variety. The basic interactions are taken to be parity and isotopic spin conserving. Certain physical assumptions in the nature of boundary conditions and the known fact that the weak coupling is very weak, together with use of the Born approximation for N, enable us to obtain an eigenvalue equation which expresses the pion-nucleon coupling constant in terms of the three masses in the problem. The correct value for gπ^2 can be obtained for an intermediate vector meson of mass comparable to the nucleon mass with essentially no cutoff employed; on the other hand, the experimental value is also obtained with a spin-zero boson and a relatively small cutoff energy
Increased risk for other cancers in individuals with Ewing sarcoma and their relatives.
BackgroundThere are few reports of the association of other cancers with Ewing sarcoma in patients and their relatives. We use a resource combining statewide genealogy and cancer reporting to provide unbiased risks.MethodsUsing a combined genealogy of 2.3 million Utah individuals and the Utah Cancer Registry (UCR), relative risks (RRs) for cancers of other sites were estimated in 143 Ewing sarcoma patients using a Cox proportional hazards model with matched controls; however, risks in relatives were estimated using internal cohort-specific cancer rates in first-, second-, and third-degree relatives.ResultsCancers of three sites (breast, brain, complex genotype/karyotype sarcoma) were observed in excess in Ewing sarcoma patients. No Ewing sarcoma patients were identified among first-, second-, or third-degree relatives of Ewing sarcoma patients. Significantly increased risk for brain, lung/bronchus, female genital, and prostate cancer was observed in first-degree relatives. Significantly increased risks were observed in second-degree relatives for breast cancer, nonmelanoma eye cancer, malignant peripheral nerve sheath cancer, non-Hodgkin lymphoma, and translocation sarcomas. Significantly increased risks for stomach cancer, prostate cancer, and acute lymphocytic leukemia were observed in third-degree relatives.ConclusionsThis analysis of risk for cancer among Ewing sarcoma patients and their relatives indicates evidence for some increased cancer predisposition in this population which can be used to individualize consideration of potential treatment of patients and screening of patients and relatives
Realization of the Large Mixing Angle Solar Neutrino Solution in an SO(10) Supersymmetric Grand Unified Model
An SO(10) supersymmetric grand unified model proposed earlier leading to the
solar solution involving ``just-so'' vacuum oscillations is reexamined to study
its ability to obtain the other possible solar solutions. It is found that all
four viable solar neutrino oscillation solutions can be achieved in the model
simply by modification of the right-handed Majorana neutrino mass matrix, M_R.
Whereas the small mixing and vacuum solutions are easily obtained with several
texture zeros in M_R, the currently-favored large mixing angle solution
requires a nearly geometric hierarchical form for M_R that leads by the seesaw
formula to a light neutrino mass matrix which has two or three texture zeros.
The form of the matrix which provides the ``fine-tuning'' necessary to achieve
the large mixing angle solution can be understood in terms of Froggatt-Nielsen
diagrams for the Dirac and right-handed Majorana neutrino mass matrices. The
solution fulfils several leptogenesis requirements which in turn can be
responsible for the baryon asymmetry in the universe.Comment: 14 pages including 2 figure
- …
