15,782 research outputs found
Recommended from our members
Mineralogy and petrology of a lunar highland breccia meteorite, MIL 07006
Effect of Ni-doping on magnetism and superconductivity in Eu0.5K0.5Fe2As2
The effect of Ni-doping on the magnetism and superconductivity in
Eu0.5K0.5Fe2As2 has been studied through a systematic investigation of magnetic
and superconducting properties of Eu0.5K0.5(Fe1-xNix)2As2 (x = 0, 0.03, 0.05,
0.08 and 0.12) compounds by means of dc and ac magnetic susceptibilities,
electrical resistivity and specific heat measurements. Eu0.5K0.5Fe2As2 is known
to exhibit superconductivity with superconducting transition temperature Tc as
high as 33 K. The Ni-doping leads to a rapid decrease in Tc; Tc is reduced to
23 K with 3% Ni-doping, and 8% Ni-doping suppresses the superconductivity to
below 1.8 K. In 3% Ni-doped sample Eu0.5K0.5(Fe0.97Ni0.03)2As2
superconductivity coexists with short range ordering of Eu2+ magnetic moments
at Tm ~ 6 K. The suppression of superconductivity with Ni-doping is accompanied
with the emergence of a long range antiferromagnetic ordering with TN = 8.5 K
and 7 K for Eu0.5K0.5(Fe0.92Ni0.08)2As2 and Eu0.5K0.5(Fe0.88Ni0.12)2As2,
respectively. The temperature and field dependent magnetic measurements for x =
0.08 and 0.12 samples reflect the possibility of a helical magnetic ordering of
Eu2 moments. We suspect that the helimagnetism of Eu spins could be responsible
for the destruction of superconductivity as has been observed in Co-doped
EuFe2As2. The most striking feature seen in the resistivity data for x = 0.08
is the reappearance of the anomaly presumably due to spin density wave
transition at around 60 K. This could be attributed to the compensation of
holes (K-doping at Eu-site) by the electrons (Ni-doping at Fe site). The
anomaly associated with spin density wave further shifts to 200 K for x = 0.12
for which the electron doping has almost compensated the holes in the system.Comment: 9 pages, 10 figure
Anatomical information science
The Foundational Model of Anatomy (FMA) is a map of the human body. Like maps of other sorts – including the map-like representations we find in familiar anatomical atlases – it is a representation of a certain portion of spatial reality as it exists at a certain (idealized) instant of time. But unlike other maps, the FMA comes in the form of a sophisticated ontology of its objectdomain, comprising some 1.5 million statements of anatomical relations among some 70,000 anatomical kinds. It is further distinguished from other maps in that it represents not some specific portion of spatial reality (say: Leeds in 1996), but rather the generalized or idealized spatial reality associated with a generalized or idealized human being at some generalized or idealized instant of time. It will be our concern in what follows to outline the approach to ontology that is represented by the FMA and to argue that it can serve as the basis for a new type of anatomical information science. We also draw some implications for our understanding of spatial reasoning and spatial ontologies in general
Supersensitive measurement of angular displacements using entangled photons
We show that the use of entangled photons having non-zero orbital angular
momentum (OAM) increases the resolution and sensitivity of angular-displacement
measurements performed using an interferometer. By employing a 44
matrix formulation to study the propagation of entangled OAM modes, we analyze
measurement schemes for two and four entangled photons and obtain explicit
expressions for the resolution and sensitivity in these schemes. We find that
the resolution of angular-displacement measurements scales as while the
angular sensitivity increases as , where is the number of
entangled photons and the magnitude of the orbital-angular-momentum mode
index. These results are an improvement over what could be obtained with
non-entangled photons carrying an orbital angular momentum of per
photonComment: 6 pages, 3 figure
Recommended from our members
Microwave Heating of Lunar Simulants JSC-1A and NU-LHT-3M: Experimental And Theoretical Analysis
Reactive oxygen species regulate caspase-11 expression and activation of the non-canonical NLRP3 inflammasome during enteric pathogen infection
Enteropathogenic and enterohemorrhagic bacterial infections in humans are a severe cause of morbidity and mortality. Although NOD-like receptors (NLRs) NOD2 and NLRP3 have important roles in the generation of protective immune responses to enteric pathogens, whether there is crosstalk among NLRs to regulate immune signaling is not known. Here, we show that mice and macrophages deficient in NOD2, or the downstream adaptor RIP2, have enhanced NLRP3-and caspases-11-dependent non-canonical inflammasome activation in a mouse model of enteropathogenic Citrobacter rodentium infection. Mechanistically, NOD2 and RIP2 regulate reactive oxygen species (ROS) production. Increased ROS in Rip2-deficient macrophages subsequently enhances c-Jun N-terminal kinase (JNK) signaling resulting in increased caspase-11 expression and activation, and more non-canonical NLRP3-dependant inflammasome activation. Intriguingly, this leads to protection of the colon epithelium for up to 10 days in Rip2-deficient mice infected with C. rodentium. Our findings designate NOD2 and RIP2 as key regulators of cellular ROS homeostasis and demonstrate for the first time that ROS regulates caspase-11 expression and non-canonical NLRP3 inflammasome activation through the JNK pathway
Recommended from our members
Compositional analysis of the very-low-Ti mare basalt component of NWA 773 and comparison with low-Ti basalts, LAP03632 and LAP02436
Abstract not available
Driving performance via exploration in changing environments: Evidence from Formula One racing
Until recently, scholars have customarily lumped multiple dimensions of environmental change into single constructs, and usually ascertained that the more the context changes, the more value firms derive from higher levels of exploration. In sync with more recent studies focusing on specific dimensions of change, in this paper we borrow theoretical elements from systems theory to examine the possibility that the reward to developing innovative product components may itself be eroded by implicit and yet burgeoning costs to fit the new component technology into existing architectures, thereby dampening system performance. Specifically, we theoretically assess how varying magnitudes of industry regulatory changes affect the optimum level of firm exploration, and propose—counter-intuitively vis-à-vis past literature—that the more radical (i.e., competence-destroying), as opposed to incremental (i.e., competence-enhancing) these changes are, the more the optimum intensity of firm exploration recedes. Based on quantitative as well as qualitative empirical analyses from the Formula One racing industry, we precisely trace the observed performance outcomes back to the underlying logic of our theory, stressing that impaired capabilities to integrate the new component in the architecture re-design, as well as time-based cognitive limitations both operate to inhibit the otherwise positive relationship between firm exploration and performance. In the end, we offer new insights to theory and practice
Autonomic regulation therapy to enhance myocardial function in heart failure patients: the ANTHEM-HFpEF study.
BackgroundApproximately half of the patients presenting with new-onset heart failure (HF) have HF with preserved left ventricular ejection fraction (HFpEF) and HF with mid-range left ventricular ejection fraction (HFmrEF). These patients have neurohormonal activation like that of HF with reduced ejection fraction; however, beta-blockers and angiotensin-converting enzyme inhibitors have not been shown to improve their outcomes, and current treatment for these patients is symptom based and empiric. Sympathoinhibition using parasympathetic stimulation has been shown to improve central and peripheral aspects of the cardiac nervous system, reflex control, induce myocyte cardioprotection, and can lead to regression of left ventricular hypertrophy. Beneficial effects of autonomic regulation therapy (ART) using vagus nerve stimulation (VNS) have also been observed in several animal models of HFpEF, suggesting a potential role for ART in patients with this disease.MethodsThe Autonomic Neural Regulation Therapy to Enhance Myocardial Function in Patients with Heart Failure and Preserved Ejection Fraction (ANTHEM-HFpEF) study is designed to evaluate the feasibility, tolerability, and safety of ART using right cervical VNS in patients with chronic, stable HFpEF and HFmrEF. Patients with symptomatic HF and HFpEF or HFmrEF fulfilling the enrolment criteria will receive chronic ART with a subcutaneous VNS system attached to the right cervical vagus nerve. Safety parameters will be continuously monitored, and cardiac function and HF symptoms will be assessed every 3 months during a post-titration follow-up period of at least 12 months.ConclusionsThe ANTHEM-HFpEF study is likely to provide valuable information intended to expand our understanding of the potential role of ART in patients with chronic symptomatic HFpEF and HFmrEF
- …
