228 research outputs found

    Massive Gravitino Propagator in Maximally Symmetric Spaces and Fermions in dS/CFT

    Get PDF
    We extend the method of calculation of propagators in maximally symmetric spaces (Minkowski, dS, AdS and their Euclidean versions) in terms of intrinsic geometric objects to the case of massive spin 3/2 field. We obtain the propagator for arbitrary space-time dimension and mass in terms of Heun's function, which is a generalization of the hypergeometric function appearing in the case of other spins. As an application of this result we calculate the conformal dimension of the dual operator in the recently proposed dS/CFT correspondence both for spin 3/2 and for spin 1/2. We find that, in agreement with the expectation from analytic continuation from AdS, the conformal dimension of the dual operator is {\it always} complex (i.e. it is complex for every space-time dimension and value of the mass parameter). We comment on the implications of this result for fermions in dS/CFT.Comment: 20 pages, references added, v3: typos fixe

    Stability of D-brane embeddings in nontrivial backgrounds

    Get PDF
    We propose a new analytical method for determining whether nonsupersymmetric probe branes embedded in nontrivial backgrounds are perturbatively stable or not. The method is based on a relationship between zero mass solutions of the relevant DBI equations of motion and tachyonic solutions. Furthermore, due to the above relation, the question, of whether a classical solution is stable or not, can be answered simply by studying the derivatives of that solution with respect to its integration constants. Finally, we illustrate the efficiency of this method by applying it to several interesting examples.Comment: 18 pages; introductory material added in Section 2, journal versio

    Spinor two-point functions and Peierls bracket in de Sitter space

    Full text link
    This paper studies spinor two-point functions for spin-1/2 and spin-3/2 fields in maximally symmetric spaces such as de Sitter spacetime, by using intrinsic geometric objects. The Feynman, positive- and negative-frequency Green functions are then obtained for these cases, from which we eventually display the supercommutator and the Peierls bracket under such a setting in two-component-spinor language.Comment: 22 pages, Latex. In the final version, the presentation has been improve

    Heterotic Flux Attractors

    Full text link
    We find attractor equations describing moduli stabilization for heterotic compactifications with generic SU(3)-structure. Complex structure and K\"ahler moduli are treated on equal footing by using SU(3)xSU(3)-structure at intermediate steps. All independent vacuum data, including VEVs of the stabilized moduli, is encoded in a pair of generating functions that depend on fluxes alone. We work out an explicit example that illustrates our methods.Comment: 37 pages, references and clarifications adde

    Gravitino Propagator in anti de Sitter space

    Full text link
    We construct the gauge invariant part of the propagator for the massless gravitino in AdS(d+1) by coupling it to a conserved current. We also derive the propagator for the massive gravitino.Comment: 24 pages; LaTe

    Ricci-flat supertwistor spaces

    Full text link
    We show that supertwistor spaces constructed as a Kahler quotient of a hyperkahler cone (HKC) with equal numbers of bosonic and fermionic coordinates are Ricci-flat, and hence, Calabi-Yau. We study deformations of the supertwistor space induced from deformations of the HKC. We also discuss general infinitesimal deformations that preserve Ricci-flatness.Comment: 13 pages, references and comments adde

    Supersymmetry and R-symmetry breaking in models with non-canonical Kahler potential

    Get PDF
    We analyze several aspects of R-symmetry and supersymmetry breaking in generalized O'Raifeartaigh models with non-canonical Kahler potential. Some conditions on the Kahler potential are derived in order for the non-supersymmetric vacua to be degenerate. We calculate the Coleman-Weinberg (CW) effective potential for general quiral non-linear sigma models and then study the 1-loop quantum corrections to the pseudo-moduli space. For R-symmetric models, the quadratic dependence of the CW potential with the ultraviolet cutoff scale disappears. We also show that the conditions for R-symmetry breaking are independent of this scale and remain unchanged with respect to those of canonical models. This is, R-symmetry can be broken when generic R-charge assignments to the fields are made, while it remains unbroken when only fields with R-charge 0 and 2 are present. We further show that these models can keep the runaway behavior of their canonical counterparts and also new runaway directions can be induced. Due to the runaway directions, the non-supersymmetric vacua is metastable.Comment: 19 pages, revised version with minor changes, references added, published in JHE
    corecore