2,294 research outputs found
High reflectivity photorefractive Bragg gratings in germania-free optical fibres
We present the first report of Bragg gratings with reflectivities exceeding 99% written in germania-fibre optical fibres by UV exposure. This result has important implications for the production of ultrashort single-frequency fibre lasers
Recommended from our members
Delirium markers in older fallers: a case-control study
Background: When a hospitalized older patient falls or develops delirium, there are significant consequences for the patient and the health care system. Assessments of inattention and altered consciousness, markers for delirium, were analyzed to determine if they were also associated with falls. Methods: This retrospective case-control study from a regional tertiary Veterans Affairs referral center identified falls and delirium risk factors from quality databases from 2010 to 2012. Older fallers with complete delirium risk assessments prior to falling were identified. As a control, non-fallers were matched at a 3:1 ratio. Admission risk factors that were compared in fallers and non-fallers included altered consciousness, cognitive performance, attention, sensory deficits, and dehydration. Odds ratio (OR) was reported (95% confidence interval [CI]). Results: After identifying 67 fallers, the control population (n=201) was matched on age (74.4±9.8 years) and ward (83.6% medical; 16.4% intensive care unit). Inattention as assessed by the Months of the Year Backward test was more common in fallers (67.2% versus 50.8%, OR=2.0; 95% CI: 1.1–3.7). Fallers tended to have altered consciousness prior to falling (28.4% versus 12.4%, OR=2.8; 95% CI: 1.3–5.8). Conclusion: In this case-control study, alterations in consciousness and inattention, assessed prior to falling, were more common in patients who fell. Brief assessments of consciousness and attention should be considered for inclusion in fall prediction
1.5µm Er<sup>3+</sup>:Yb<sup>3+</sup> doped fibre DBF laser
We report the first DFB fiber laser. When pumped with a 980nm diode laser, the 2cm-long laser has an output power of 2mW at 1.534µm and a RIN of < -156dB/Hz
Photosensitivity in germanosilicate fibres: electronic change or physical change?
Presentation slides<br/
Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection
Type I IFNs promote cellular responses to viruses, and IFN receptor (IFNAR) signaling regulates the responses of endothelial cells of the blood-brain barrier (BBB) during neurotropic viral infection. However, the role of astrocytes in innate immune responses of the BBB during viral infection of the CNS remains to be fully elucidated. Here, we have demonstrated that type I IFNAR signaling in astrocytes regulates BBB permeability and protects the cerebellum from infection and immunopathology. Mice with astrocyte-specific loss of IFNAR signaling showed decreased survival after West Nile virus infection. Accelerated mortality was not due to expanded viral tropism or increased replication. Rather, viral entry increased specifically in the hindbrain of IFNAR-deficient mice, suggesting that IFNAR signaling critically regulates BBB permeability in this brain region. Pattern recognition receptors and IFN-stimulated genes had higher basal and IFN-induced expression in human and mouse cerebellar astrocytes than did cerebral cortical astrocytes, suggesting that IFNAR signaling has brain region–specific roles in CNS immune responses. Taken together, our data identify cerebellar astrocytes as key responders to viral infection and highlight the existence of distinct innate immune programs in astrocytes from evolutionarily disparate regions of the CNS
Hamiltonian Dynamics and the Phase Transition of the XY Model
A Hamiltonian dynamics is defined for the XY model by adding a kinetic energy
term. Thermodynamical properties (total energy, magnetization, vorticity)
derived from microcanonical simulations of this model are found to be in
agreement with canonical Monte-Carlo results in the explored temperature
region. The behavior of the magnetization and the energy as functions of the
temperature are thoroughly investigated, taking into account finite size
effects. By representing the spin field as a superposition of random phased
waves, we derive a nonlinear dispersion relation whose solutions allow the
computation of thermodynamical quantities, which agree quantitatively with
those obtained in numerical experiments, up to temperatures close to the
transition. At low temperatures the propagation of phonons is the dominant
phenomenon, while above the phase transition the system splits into ordered
domains separated by interfaces populated by topological defects. In the high
temperature phase, spins rotate, and an analogy with an Ising-like system can
be established, leading to a theoretical prediction of the critical temperature
.Comment: 10 figures, Revte
Temperature dependent fluctuations in the two-dimensional XY model
We present a detailed investigation of the probability density function (PDF)
of order parameter fluctuations in the finite two-dimensional XY (2dXY) model.
In the low temperature critical phase of this model, the PDF approaches a
universal non-Gaussian limit distribution in the limit T-->0. Our analysis
resolves the question of temperature dependence of the PDF in this regime, for
which conflicting results have been reported. We show analytically that a weak
temperature dependence results from the inclusion of multiple loop graphs in a
previously-derived graphical expansion. This is confirmed by numerical
simulations on two controlled approximations to the 2dXY model: the Harmonic
and ``Harmonic XY'' models. The Harmonic model has no
Kosterlitz-Thouless-Berezinskii (KTB) transition and the PDF becomes
progressively less skewed with increasing temperature until it closely
approximates a Gaussian function above T ~ 4\pi. Near to that temperature we
find some evidence of a phase transition, although our observations appear to
exclude a thermodynamic singularity.Comment: 15 pages, 5 figures and 1 tabl
Shallow Ultraviolet Transits of WD 1145+017
WD 1145+017 is a unique white dwarf system that has a heavily polluted
atmosphere, an infrared excess from a dust disk, numerous broad absorption
lines from circumstellar gas, and changing transit features, likely from
fragments of an actively disintegrating asteroid. Here, we present results from
a large photometric and spectroscopic campaign with Hubble, Keck , VLT,
Spitzer, and many other smaller telescopes from 2015 to 2018. Somewhat
surprisingly, but consistent with previous observations in the u' band, the UV
transit depths are always shallower than those in the optical. We develop a
model that can quantitatively explain the observed "bluing" and the main
findings are: I. the transiting objects, circumstellar gas, and white dwarf are
all aligned along our line of sight; II. the transiting object is blocking a
larger fraction of the circumstellar gas than of the white dwarf itself.
Because most circumstellar lines are concentrated in the UV, the UV flux
appears to be less blocked compared to the optical during a transit, leading to
a shallower UV transit. This scenario is further supported by the strong
anti-correlation between optical transit depth and circumstellar line strength.
We have yet to detect any wavelength-dependent transits caused by the
transiting material around WD 1145+017.Comment: 16 pages, 11 figures, 6 tables, ApJ, in pres
Quasi-long-range ordering in a finite-size 2D Heisenberg model
We analyse the low-temperature behaviour of the Heisenberg model on a
two-dimensional lattice of finite size. Presence of a residual magnetisation in
a finite-size system enables us to use the spin wave approximation, which is
known to give reliable results for the XY model at low temperatures T. For the
system considered, we find that the spin-spin correlation function decays as
1/r^eta(T) for large separations r bringing about presence of a
quasi-long-range ordering. We give analytic estimates for the exponent eta(T)
in different regimes and support our findings by Monte Carlo simulations of the
model on lattices of different sizes at different temperatures.Comment: 9 pages, 3 postscript figs, style files include
GiViP: A Visual Profiler for Distributed Graph Processing Systems
Analyzing large-scale graphs provides valuable insights in different
application scenarios. While many graph processing systems working on top of
distributed infrastructures have been proposed to deal with big graphs, the
tasks of profiling and debugging their massive computations remain time
consuming and error-prone. This paper presents GiViP, a visual profiler for
distributed graph processing systems based on a Pregel-like computation model.
GiViP captures the huge amount of messages exchanged throughout a computation
and provides an interactive user interface for the visual analysis of the
collected data. We show how to take advantage of GiViP to detect anomalies
related to the computation and to the infrastructure, such as slow computing
units and anomalous message patterns.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
- …
