28,610 research outputs found
Interaction of gases with lunar materials
The surface chemistry of Apollo 17 lunar fines samples 74220 (the orange soil) and 74241 (the gray control soil) has been studied by measuring the adsorption of nitrogen, argon, and oxygen (all at 77 K) and also water vapor (at 20 or 22 C). In agreement with results for samples from other missions, both samples had low initial specific surface areas, consisted of nonporous particles, and were attacked by water vapor at high relative pressure to give an increased specific surface area and create a pore system which gave rise to a capillary condensation hysteresis loop in the adsorption isotherms. In contrast to previous samples, both of the Apollo 17 soils were partially hydrophobic in their initial interaction with water vapor (both samples were completely hydrophilic after the reaction with water). The results are consistent with formation at high temperatures without subsequent exposure to significant amounts of water
Natural laminar flow experiments on modern airplane surfaces
Flight and wind-tunnel natural laminar flow experiments have been conducted on various lifting and nonlifting surfaces of several airplanes at unit Reynolds numbers between 0.63 x 10 to the 6th power/ft and 3.08 x 10 to the 6th power/ft, at Mach numbers from 0.1 to 0.7, and at lifting surface leading-edge sweep angles from 0 deg to 63 deg. The airplanes tested were selected to provide relatively stiff skin conditions, free from significant roughness and waviness, on smooth modern production-type airframes. The observed transition locations typically occurred downstream of the measured or calculated pressure peak locations for the test conditions involved. No discernible effects on transition due to surface waviness were observed on any of the surfaces tested. None of the measured heights of surface waviness exceeded the empirically predicted allowable surface waviness. Experimental results consistent with spanwise contamination criteria were observed. Large changes in flight-measured performance and stability and control resulted from loss of laminar flow by forced transition. Rain effects on the laminar boundary layer caused stick-fixed nose-down pitch-trim changes in two of the airplanes tested. No effect on transition was observed for flight through low-altitude liquid-phase clouds. These observations indicate the importance of fixed-transition tests as a standard flight testing procedure for modern smooth airframes
Interaction of gases with lunar materials
Quantitative efforts to assess the surface properties of lunar fines, particularly water induced porosity are discussed. Data show that: (1) changes induced in lunar fines are not visible in high energy electron micrographs, (2) scanning micrographs show no change in particle size distribution as a result of reaction with water, (3) water induced changes are internal to the particles themselves, (4) normal laboratory atmosphere blocks alteration reaction with water, and (5) surface properties of mature lunar soils appear to be almost independent of chemical composition and mineralogy, but there are some variations in their reactivity toward water
Determining the Spectral Signature of Spatial Coherent Structures
We applied to an open flow a proper orthogonal decomposition (pod) technique,
on 2D snapshots of the instantaneous velocity field, to reveal the spatial
coherent structures responsible of the self-sustained oscillations observed in
the spectral distribution of time series. We applied the technique to 2D planes
out of 3D direct numerical simulations on an open cavity flow. The process can
easily be implemented on usual personal computers, and might bring deep
insights on the relation between spatial events and temporal signature in (both
numerical or experimental) open flows.Comment: 4 page
Quantum signatures of chaos in the dynamics of a trapped ion
We show how a nonlinear chaotic system, the parametrically kicked nonlinear
oscillator, may be realised in the dynamics of a trapped, laser-cooled ion,
interacting with a sequence of standing wave pulses. Unlike the original
optical scheme [G.J.Milburn and C.A.Holmes, Phys. Rev A, 44, p4704, (1991)],
the trapped ion enables strongly quantum dynamics with minimal dissipation.
This should permit an experimental test of one of the quantum signatures of
chaos; irregular collapse and revival dynamics of the average vibrational
energy.Comment: 9 pages, 9 Postscript figures, Revtex, submitted to Phys. Rev.
Numerical Evolution of axisymmetric vacuum spacetimes: a code based on the Galerkin method
We present the first numerical code based on the Galerkin and Collocation
methods to integrate the field equations of the Bondi problem. The Galerkin
method like all spectral methods provide high accuracy with moderate
computational effort. Several numerical tests were performed to verify the
issues of convergence, stability and accuracy with promising results. This code
opens up several possibilities of applications in more general scenarios for
studying the evolution of spacetimes with gravitational waves.Comment: 11 pages, 6 figures. To appear in Classical and Quantum Gravit
Parkinson\u27s disease and multiple system atrophy have distinct α-synuclein seed characteristics
Proper orthogonal decomposition of solar photospheric motions
The spatio-temporal dynamics of the solar photosphere is studied by
performing a Proper Orthogonal Decomposition (POD) of line of sight velocity
fields computed from high resolution data coming from the MDI/SOHO instrument.
Using this technique, we are able to identify and characterize the different
dynamical regimes acting in the system. Low frequency oscillations, with
frequencies in the range 20-130 microHz, dominate the most energetic POD modes
(excluding solar rotation), and are characterized by spatial patterns with
typical scales of about 3 Mm. Patterns with larger typical scales of 10 Mm, are
associated to p-modes oscillations at frequencies of about 3000 microHz.Comment: 8 figures in jpg in press on PR
New technologies - new insights into the pathogenesis of hepatic encephalopathy
Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which frequently accompanies acute or chronic liver disease. It is characterized by a variety of symptoms of different severity such as cognitive deficits and impaired motor functions. Currently, HE is seen as a consequence of a low grade cerebral oedema associated with the formation of cerebral oxidative stress and deranged cerebral oscillatory networks. However, the pathogenesis of HE is still incompletely understood as liver dysfunction triggers exceptionally complex metabolic derangements in the body which need to be investigated by appropriate technologies. This review summarizes technological approaches presented at the ISHEN conference 2014 in London which may help to gain new insights into the pathogenesis of HE. Dynamic in vivo13C nuclear magnetic resonance spectroscopy was performed to analyse effects of chronic liver failure in rats on brain energy metabolism. By using a genomics approach, microRNA expression changes were identified in plasma of animals with acute liver failure which may be involved in interorgan interactions and which may serve as organ-specific biomarkers for tissue damage during acute liver failure. Genomics were also applied to analyse glutaminase gene polymorphisms in patients with liver cirrhosis indicating that haplotype-dependent glutaminase activity is an important pathogenic factor in HE. Metabonomics represents a promising approach to better understand HE, by capturing the systems level metabolic changes associated with disease in individuals, and enabling monitoring of metabolic phenotypes in real time, over a time course and in response to treatment, to better inform clinical decision making. Targeted fluxomics allow the determination of metabolic reaction rates thereby discriminating metabolite level changes in HE in terms of production, consumption and clearance
- …
