8 research outputs found
Volume CVI, Number 19, April 14, 1989
Institute of High Performance Computing, IHPC;University of Perugia, Italy;University of Calgary, Canada;University of Minnesota, MN, USA;Queen's University BelfastInternational Conference on Computational Science and Its Applications - ICCSA 2005 -- 9 May 2005 through 12 May 2005 -- 65625Discrete mathematics is one of the very basic mathematics courses in computer engineering (CE) and/or computer science (CS) departments. This course covers almost all of the basic concepts for many other courses in the curriculum and requires active learning of students. For this purpose, especially "propositions" concept, which cannot be understood well in prior years, should be covered with every detail. Previous studies show that learning by entertaining activities and competition has positive effect on student motivation. In this study, an Internet-based Discrete Mathematics Package (DMP) for "propositions" that can work in mobile devices and encourages competitive learning between students has been developed within related literature. © Springer-Verlag Berlin Heidelberg 2005
An introduction to InP-based generic integration technology
Photonic integrated circuits (PICs) are considered as the way to make photonic systems or subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets. Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology
An introduction to InP-based generic integration technology
Photonic integrated circuits (PICs) are considered as the way to make photonic systems or
subsystems cheap and ubiquitous. PICs still are several orders of magnitude more expensive than their microelectronic counterparts, which has restricted their application to a few niche markets.Recently, a novel approach in photonic integration is emerging which will reduce the R&D and prototyping costs and the throughput time of PICs by more than an order of magnitude. It will bring the application of PICs that integrate complex and advanced photonic functionality on a single chip within reach for a large number of small and larger companies and initiate a breakthrough in the application of Photonic ICs. The paper explains the concept of generic photonic integration technology using the technology developed by the COBRA research institute of TU Eindhoven as an example, and it describes the current status and prospects of generic InP-based integration technology.Funding is acknowledged by the EU-projects ePIXnet, EuroPIC and PARADIGM and the Dutch projects NRC Photonics, MEMPHIS, IOP Photonic Devices and STW GTIP. Many others have contributed and the authors would like to thank other PARADIGM and EuroPIC partners for their help in discussions, particularly Michael Robertson (CIP).This is the final published version distributed under a Creative Commons Attribution License. It can also be viewed on the publisher's website at: http://iopscience.iop.org/0268-1242/29/8/08300
Deep UV lithography process in generic InP integration for arrayed waveguide gratings
Low-excess-loss arrayed waveguide gratings are enabled by unique application of deep UV lithography in InP integrated photonics through reduced feature sizes and, more specifically, well-resolved inter-waveguide gap dimensions. Submicrometer wafer-flatness is shown to be required to achieve the critical dimension uniformity better than 10 nm on 3-in substrates. Arrayed waveguide grating devices were fabricated and the effect of inter-waveguide gap scaling on the excess losses was measured and compared to simulations. Excess losses down to 0.15 dB were demonstrated to be lower than predicted with the 2-D simulations. The tapering of the etch depth inside the gaps due to the lag effect of the etch process may explain the improvements
Deep UV lithography process in generic InP integration for arrayed waveguide gratings
\u3cp\u3eLow-excess-loss arrayed waveguide gratings are enabled by unique application of deep UV lithography in InP integrated photonics through reduced feature sizes and, more specifically, well-resolved inter-waveguide gap dimensions. Submicrometer wafer-flatness is shown to be required to achieve the critical dimension uniformity better than 10 nm on 3-in substrates. Arrayed waveguide grating devices were fabricated and the effect of inter-waveguide gap scaling on the excess losses was measured and compared to simulations. Excess losses down to 0.15 dB were demonstrated to be lower than predicted with the 2-D simulations. The tapering of the etch depth inside the gaps due to the lag effect of the etch process may explain the improvements.\u3c/p\u3
