1,672 research outputs found

    Toward a structural understanding of turbulent drag reduction: nonlinear coherent states in viscoelastic shear flows

    Get PDF
    Nontrivial steady flows have recently been found that capture the main structures of the turbulent buffer layer. We study the effects of polymer addition on these "exact coherent states" (ECS) in plane Couette flow. Despite the simplicity of the ECS flows, these effects closely mirror those observed experimentally: Structures shift to larger length scales, wall-normal fluctuations are suppressed while streamwise ones are enhanced, and drag is reduced. The mechanism underlying these effects is elucidated. These results suggest that the ECS are closely related to buffer layer turbulence.Comment: 5 pages, 3 figures, published version, Phys. Rev. Lett. 89, 208301 (2002

    Small scale statistics of viscoelastic turbulence

    Full text link
    The small scale statistics of homogeneous isotropic turbulence of dilute polymer solutions is investigated by means of direct numerical simulations of a simplified viscoelastic fluid model. It is found that polymers only partially suppress the turbulent cascade below the Lumley scale, leaving a remnant energy flux even for large elasticity. As a consequence, fluid acceleration in viscoelastic flows is reduced with respect to Newtonian turbulence, whereas its rescaled probability density is left unchanged. At large scales the velocity field is found to be unaffected by the presence of polymers.Comment: 7 pages, 4 figure

    Stretching of polymers in a random three-dimensional flow

    Full text link
    Behavior of a dilute polymer solution in a random three-dimensional flow with an average shear is studied experimentally. Polymer contribution to the shear stress is found to be more than two orders of magnitude higher than in a laminar shear flow. The results indicate that the polymer molecules get strongly stretched by the random motion of the fluid.Comment: 4 pages, 3 figure

    Dynamics of threads and polymers in turbulence: power-law distributions and synchronization

    Full text link
    We study the behavior of threads and polymers in a turbulent flow. These objects have finite spatial extension, so the flow along them differs slightly. The corresponding drag forces produce a finite average stretching and the thread is stretched most of the time. Nevertheless, the probability of shrinking fluctuations is significant and is known to decay only as a power-law. We show that the exponent of the power law is a universal number independent of the statistics of the flow. For polymers the coil-stretch transition exists: the flow must have a sufficiently large Lyapunov exponent to overcome the elastic resistance and stretch the polymer from the coiled state it takes otherwise. The probability of shrinking from the stretched state above the transition again obeys a power law but with a non-universal exponent. We show that well above the transition the exponent becomes universal and derive the corresponding expression. Furthermore, we demonstrate synchronization: the end-to-end distances of threads or polymers above the transition are synchronized by the flow and become identical. Thus, the transition from Newtonian to non-Newtonian behavior in dilute polymer solutions can be seen as an ordering transition.Comment: 13 pages, version accepted to Journal of Statistical Mechanic

    Polymer transport in random flow

    Get PDF
    The dynamics of polymers in a random smooth flow is investigated in the framework of the Hookean dumbbell model. The analytical expression of the time-dependent probability density function of polymer elongation is derived explicitly for a Gaussian, rapidly changing flow. When polymers are in the coiled state the pdf reaches a stationary state characterized by power-law tails both for small and large arguments compared to the equilibrium length. The characteristic relaxation time is computed as a function of the Weissenberg number. In the stretched state the pdf is unstationary and exhibits multiscaling. Numerical simulations for the two-dimensional Navier-Stokes flow confirm the relevance of theoretical results obtained for the delta-correlated model.Comment: 28 pages, 6 figure

    Independent Component Analysis of Spatiotemporal Chaos

    Full text link
    Two types of spatiotemporal chaos exhibited by ensembles of coupled nonlinear oscillators are analyzed using independent component analysis (ICA). For diffusively coupled complex Ginzburg-Landau oscillators that exhibit smooth amplitude patterns, ICA extracts localized one-humped basis vectors that reflect the characteristic hole structures of the system, and for nonlocally coupled complex Ginzburg-Landau oscillators with fractal amplitude patterns, ICA extracts localized basis vectors with characteristic gap structures. Statistics of the decomposed signals also provide insight into the complex dynamics of the spatiotemporal chaos.Comment: 5 pages, 6 figures, JPSJ Vol 74, No.

    Magnetic field correlations in a random flow with strong steady shear

    Full text link
    We analyze magnetic kinematic dynamo in a conducting fluid where the stationary shear flow is accompanied by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, we establish their growth rates and scaling behavior. General assertions are illustrated by explicit solution of the model where the velocity field is short-correlated in time

    Elastic turbulence in curvilinear flows of polymer solutions

    Full text link
    Following our first report (A. Groisman and V. Steinberg, \sl Nature 405\bf 405, 53 (2000)) we present an extended account of experimental observations of elasticity induced turbulence in three different systems: a swirling flow between two plates, a Couette-Taylor (CT) flow between two cylinders, and a flow in a curvilinear channel (Dean flow). All three set-ups had high ratio of width of the region available for flow to radius of curvature of the streamlines. The experiments were carried out with dilute solutions of high molecular weight polyacrylamide in concentrated sugar syrups. High polymer relaxation time and solution viscosity ensured prevalence of non-linear elastic effects over inertial non-linearity, and development of purely elastic instabilities at low Reynolds number (Re) in all three flows. Above the elastic instability threshold, flows in all three systems exhibit features of developed turbulence. Those include: (i)randomly fluctuating fluid motion excited in a broad range of spatial and temporal scales; (ii) significant increase in the rates of momentum and mass transfer (compared to those expected for a steady flow with a smooth velocity profile). Phenomenology, driving mechanisms, and parameter dependence of the elastic turbulence are compared with those of the conventional high Re hydrodynamic turbulence in Newtonian fluids.Comment: 23 pages, 26 figure
    corecore