1,293 research outputs found
Propagating EUV disturbances in the solar corona : two-wavelength observations
Quasi-periodic EUV disturbances simultaneously observed in 171 Å and 195 Å TRACE bandpasses propagating outwardly in a fan-like magnetic structure of a coronal active region are analysed. Time series of disturbances observed in the different bandpasses have a relatively high correlation coefficient (up to about 0.7). The correlation has a tendency to decrease with distance along the structure: this is consistent with an interpretation of the disturbances in terms of parallel-propagating slow magnetoacoustic waves. The wavelet analysis does not show a significant difference between waves observed in different bandpasses. Periodic patterns of two distinct periods: 2-3 min and 5-8 min are detected in both bandpasses, existing simultaneously and at the same distance along the loop, suggesting the nonlinear generation of the second harmonics
Comparative Analysis of Non-thermal Emissions and Study of Electron Transport in a Solar Flare
We study the non-thermal emissions in a solar flare occurring on 2003 May 29
by using RHESSI hard X-ray (HXR) and Nobeyama microwave observations. This
flare shows several typical behaviors of the HXR and microwave emissions: time
delay of microwave peaks relative to HXR peaks, loop-top microwave and
footpoint HXR sources, and a harder electron energy distribution inferred from
the microwave spectrum than from the HXR spectrum. In addition, we found that
the time profile of the spectral index of the higher-energy (\gsim 100 keV)
HXRs is similar to that of the microwaves, and is delayed from that of the
lower-energy (\lsim 100 keV) HXRs. We interpret these observations in terms
of an electron transport model called {\TPP}. We numerically solved the
spatially-homogeneous {\FP} equation to determine electron evolution in energy
and pitch-angle space. By comparing the behaviors of the HXR and microwave
emissions predicted by the model with the observations, we discuss the
pitch-angle distribution of the electrons injected into the flare site. We
found that the observed spectral variations can qualitatively be explained if
the injected electrons have a pitch-angle distribution concentrated
perpendicular to the magnetic field lines rather than isotropic distribution.Comment: 32 pages, 12 figures, accepted for publication in The Astronomical
Journa
Accelerated Electrons in Cassiopeia A: An Explanation for the Hard X-ray Tail
We propose a model for the hard X-ray (> 10 keV) emission observed from the
supernova remnant Cas A. Lower hybrid waves are generated in strong (mG)
magnetic fields, generally believed to reside in this remnant, by shocks
reflected from density inhomogeneities. These then accelerate electrons to
energies of several tens of keV. Around 4% of the x-ray emitting plasma
electrons need to be in this accelerated distribution, which extends up to
electron velocities of order the electron Alfven speed, and is directled along
magnetic field lines. Bremsstrahlung from these electrons produces the observed
hard x-ray emission. Such waves and accelerated electrons have been observed in
situ at Comet Halley, and we discuss the viability of the extrapolation from
this case to the parameters relevant to Cas A.Comment: 20 pages, 3 figures, aasTeX502, accepted in Ap
Collisional damping rates for plasma waves
The distinction between the plasma dynamics dominated by collisional
transport versus collective processes has never been rigorously addressed until
recently. A recent paper [Yoon et al., Phys. Rev. E 93, 033203 (2016)]
formulates for the first time, a unified kinetic theory in which collective
processes and collisional dynamics are systematically incorporated from first
principles. One of the outcomes of such a formalism is the rigorous derivation
of collisional damping rates for Langmuir and ion-acoustic waves, which can be
contrasted to the heuristic customary approach. However, the results are given
only in formal mathematical expressions. The present Brief Communication
numerically evaluates the rigorous collisional damping rates by considering the
case of plasma particles with Maxwellian velocity distribution function so as
to assess the consequence of the rigorous formalism in a quantitative manner.
Comparison with the heuristic ("Spitzer") formula shows that the accurate
damping rates are much lower in magnitude than the conventional expression,
which implies that the traditional approach over-estimates the importance of
attenuation of plasma waves by collisional relaxation process. Such a finding
may have a wide applicability ranging from laboratory to space and
astrophysical plasmas.Comment: 5 pages, 2 figures; Published in Physics of Plasmas, volume/Issue
23/6. Publisher: AIP Publishing LLC. Date: Jun 1, 2016. URL:
http://aip.scitation.org/doi/10.1063/1.4953802 Rights managed by AIP
Publishing LL
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
Solar Flares as Cascades of Reconnecting Magnetic Loops
A model for the solar coronal magnetic field is proposed where multiple
directed loops evolve in space and time. Loops injected at small scales are
anchored by footpoints of opposite polarity moving randomly on a surface.
Nearby footpoints of the same polarity aggregate, and loops can reconnect when
they collide. This may trigger a cascade of further reconnection, representing
a solar flare. Numerical simulations show that a power law distribution of
flare energies emerges, associated with a scale free network of loops,
indicating self-organized criticality.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let
On Collisionless Electron-Ion Temperature Equilibration in the Fast Solar Wind
We explore a mechanism, entirely new to the fast solar wind, of electron
heating by lower hybrid waves to explain the shift to higher charge states
observed in various elements in the fast wind at 1 A.U. relative to the
original coronal hole plasma. This process is a variation on that previously
discussed for two temperature accretion flows by Begelman & Chiueh. Lower
hybrid waves are generated by gyrating minor ions (mainly alpha-particles) and
become significant once strong ion cyclotron heating sets in beyond 1.5 R_sun.
In this way the model avoids conflict with SUMER electron temperature
diagnostic measurements between 1 and 1.5 R_sun. The principal requirement for
such a process to work is the existence of density gradients in the fast solar
wind, with scale length of similar order to the proton inertial length. Similar
size structures have previously been inferred by other authors from radio
scintillation observations and considerations of ion cyclotron wave generation
by global resonant MHD waves.Comment: 32 pages including 11 figures, 4 tables, accepted by Ap
- …
