106 research outputs found

    Novel technique for supernova detection with IceCube

    Full text link
    The current supernova detection technique used in IceCube relies on the sudden deviation of the summed photomultiplier noise rate from its nominal value during the neutrino burst, making IceCube a 3\approx 3 Megaton effective detection volume - class supernova detector. While galactic supernovae can be resolved with this technique, the supernova neutrino emission spectrum remains unconstrained and thus presents a limited potential for the topics related to supernova core collapse models. The paper elaborates analytically on the capabilities of IceCube to detect supernovae through the analysis of hits in the detector correlated in space and time. These arise from supernova neutrinos interacting in the instrumented detector volume along single strings. Although the effective detection volume for such coincidental hits is much smaller (35\gtrsim 35\,kton, about the scale of SuperK), a wealth of information is obtained due to the comparatively low coincidental noise rate. We demonstrate that a neutrino flux from a core collapse supernova will produce a signature enabling the resolution of rough spectral features and, in the case of a strong signal, providing indication on its location. We further discuss the enhanced potential of a rather modest detector extension, a denser array in the center of IceCube, within our one dimensional analytic calculation framework. Such an extension would enable the exploration of the neutrino sky above a few GeV and the detection of supernovae up to a few 100's of kilo parsec. However, a 343-4\,Mpc detection distance, necessary for routine supernova detection, demands a significant increase of the effective detection volume and can be obtained only with a more ambitious instrument, particularly the boosting of sensor parameters such as the quantum efficiency and light collection area.Comment: 12 p., 10 fi

    Anisotropy in the pion angular distribution of the reaction pp -> pp pi0 at 400 MeV

    Get PDF
    The reaction pp -> pp pi0 was studied with the WASA detector at the CELSIUS storage ring. The center of mass angular distribution of the pi0 was obtained by detection of the gamma decay products together with the two outgoing protons, and found to be anisotropic with a negative second derivative slope, in agreement with the theoretical predictions from a microscopic calculation.Comment: Revtex 4 style, 5 pages 7 figures, PACS numbers:13.60.Le, 13.75.Cs, 21.45.+v, 25.10.+

    Measurement of the Slope Parameter for the eta->3pi0 Decay in the pp->pp eta Reaction

    Get PDF
    The CELSIUS/WASA setup is used to measure the 3pi0 decay of eta mesons produced in pp interactions with beam kinetic energies of 1.36 and 1.45 GeV. The efficiency-corrected Dalitz plot and density distributions for this decay are shown, together with a fit of the quadratic slope parameter alpha yielding alpha = -0.026 +/- 0.010(stat) +/- 0.010(syst). This value is compared to recent experimental results and theoretical predictions.Comment: 4 pages, 7 Postscript figures, uses revtex4.st

    Measurement of Spin Correlation Parameters ANN_{NN}, ASS_{SS}, and A_SL{SL} at 2.1 GeV in Proton-Proton Elastic Scattering

    Full text link
    At the Cooler Synchrotron COSY/J\"ulich spin correlation parameters in elastic proton-proton (pp) scattering have been measured with a 2.11 GeV polarized proton beam and a polarized hydrogen atomic beam target. We report results for ANN_{NN}, ASS_{SS}, and A_SL{SL} for c.m. scattering angles between 30o^o and 90o^o. Our data on ASS_{SS} -- the first measurement of this observable above 800 MeV -- clearly disagrees with predictions of available of pp scattering phase shift solutions while ANN_{NN} and A_SL{SL} are reproduced reasonably well. We show that in the direct reconstruction of the scattering amplitudes from the body of available pp elastic scattering data at 2.1 GeV the number of possible solutions is considerably reduced.Comment: 4 pages, 4 figure

    The pp -> pp pi pi pi reaction channels in the threshold region

    Full text link
    The cross section for prompt neutral and charged three pion production in pp interactions was measured at excess energies in the range 160 - 217 MeV. That comprises the first measurement of the pp->pp pi0pi0pi0 reaction and the comparison with the pp->pp pi+pi-pi0 reaction, in a very direct way. The experiment was performed above the eta meson production threshold and the cross section normalization was obtained from a concurrent measurement of the reaction pp->pp eta with the eta decaying into 3 pions. Since the same final states are selected, the measurement has a low systematical error. The measured cross section ratio sigma(pp->pp pi+pi-pi0)/sigma(pp->pp pi0\pi0\pi0) is compared to predictions of dominance of different isobars in the intermediate state.Comment: 12 pages, 4 figures New discussion on the pp->pp3pi reaction mechanis

    Production of eta and 3pi mesons in the pd->3HeX reaction at 1360 and 1450 MeV

    Get PDF
    The cross sections of the pd -> 3He eta, pd -> 3He pi0 pi0 pi0 and pd -> 3He pi+ pi- pi0 reactions have been measured at beam kinetic energies T_p= 1360 MeV and T_p= 1450 MeV using the CELSIUS/WASA detector setup. At both energies, the differential cross section dsigma/dOmega of the eta meson in the pd -> 3He eta reaction shows a strong forward-backward asymmetry in the CMS. The ratio between the pd -> 3He pi+ pi- pi0 and the pd -> 3He pi0 pi0 pi0 cross sections has been analysed in terms of isospin amplitudes. The reconstructed invariant mass distributions of the pi-pi, 3He-pi and 3He-2pi systems provide hints on the role of nucleon resonances in the 3pi production process.Comment: Shorter version accepted to EPJA 10 pages 14 figure

    Detection of Atmospheric Muon Neutrinos with the IceCube 9-String Detector

    Get PDF
    The IceCube neutrino detector is a cubic kilometer TeV to PeV neutrino detector under construction at the geographic South Pole. The dominant population of neutrinos detected in IceCube is due to meson decay in cosmic-ray air showers. These atmospheric neutrinos are relatively well-understood and serve as a calibration and verification tool for the new detector. In 2006, the detector was approximately 10% completed, and we report on data acquired from the detector in this configuration. We observe an atmospheric neutrino signal consistent with expectations, demonstrating that the IceCube detector is capable of identifying neutrino events. In the first 137.4 days of livetime, 234 neutrino candidates were selected with an expectation of 211 +/- 76.1(syst.) +/- 14.5(stat.) events from atmospheric neutrinos

    IceCube sensitivity for low-energy neutrinos from nearby supernovae

    Get PDF
    This paper describes the response of the IceCube neutrino telescope located at the geographic south pole to outbursts of MeV neutrinos from the core collapse of nearby massive stars. IceCube was completed in December 2010 forming a lattice of 5160 photomultiplier tubes that monitor a volume of ∼1 km3 in the deep Antarctic ice for particle induced photons. The telescope was designed to detect neutrinos with energies greater than 100 GeV. Owing to subfreezing ice temperatures, the photomultiplier dark noise rates are particularly low. Hence IceCube can also detect large numbers of MeV neutrinos by observing a collective rise in all photomultiplier rates on top of the dark noise. With 2 ms timing resolution, IceCube can detect subtle features in the temporal development of the supernova neutrino burst. For a supernova at the galactic center, its sensitivity matches that of a background-free megaton-scale supernova search experiment. The sensitivity decreases to 20 standard deviations at the galactic edge (30 kpc) and 6 standard deviations at the Large Magellanic Cloud (50 kpc). IceCube is sending triggers from potential supernovae to the Supernova Early Warning System. The sensitivity to neutrino properties such as the neutrino hierarchy is discussed, as well as the possibility to detect the neutronization burst, a short outbreak of νe ’s released by electron capture on protons soon after collapse. Tantalizing signatures, such as the formation of a quark star or a black hole as well as the characteristics of shock waves, are investigated to illustrate IceCube’s capability for supernova detection
    corecore