364 research outputs found

    Breaking spaces and forms for the DPG method and applications including Maxwell equations

    Get PDF
    Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. The technique also permits considerable simplifications of previous analyses of DPG methods for other equations. Reliability and efficiency estimates for an error indicator also follow. Finally, the equivalence of stability for various formulations of the same Maxwell problem is proved, including the strong form, the ultraweak form, and a spectrum of forms in between

    A Computational Study of the Weak Galerkin Method for Second-Order Elliptic Equations

    Full text link
    The weak Galerkin finite element method is a novel numerical method that was first proposed and analyzed by Wang and Ye for general second order elliptic problems on triangular meshes. The goal of this paper is to conduct a computational investigation for the weak Galerkin method for various model problems with more general finite element partitions. The numerical results confirm the theory established by Wang and Ye. The results also indicate that the weak Galerkin method is efficient, robust, and reliable in scientific computing.Comment: 19 page

    Structure, shear resistance and interaction with point defects of interfaces in Cu–Nb nanocomposites synthesized by severe plastic deformation

    Get PDF
    Atomistic modeling is used to investigate the shear resistance and interaction with point defects of a Cu–Nb interface found in nanocomposites synthesized by severe plastic deformation. The shear resistance of this interface is highly anisotropic: in one direction shearing occurs at stresses <1200 MPa, while in the other it does not occur at all. The binding energy of vacancies, interstitials and He impurities to this interface depends sensitively on the binding location, but there is no point defect delocalization, nor does this interface contain any constitutional defects. These behaviors are markedly dissimilar from a different Cu–Nb interface found in magnetron sputtered composites. The dissimilarities may, however, be explained by quantitative differences in the detailed structure of these two interfaces.MISTI-France Seed Fun

    A Primal DPG Method Without a First-Order Reformulation

    Get PDF
    We show that it is possible to apply the DPG methodology without reformulating a second-order boundary value problem into a first-order system, by considering the simple example of the Poisson equation. The result is a new weak formulation and a new DPG method for the Poisson equation, which has no numerical trace variable, but has a numerical flux approximation on the element interfaces, in addition to the primal interior variable

    Global entangling properties of the coupled kicked tops

    Full text link
    We study global entangling properties of the system of coupled kicked tops testing various hypotheses and predictions concerning entanglement in quantum chaotic systems. In order to analyze the averaged initial entanglement production rate and the averaged asymptotic entanglement different ensembles of initial product states are evolved. Two different ensembles with natural probability distribution are considered: product states of independent spin-coherent states and product states of arbitrary states. It appears that the choice of either of these ensembles results in significantly different averaged entanglement behavior. We investigate also a relation between the averaged asymptotic entanglement and the mean entanglement of the eigenvectors of an evolution operator. Lower bound on the averaged asymptotic entanglement is derived, expressed in terms of the eigenvector entanglement.Comment: 11 pages, 7 figures, RevTe

    A comparison between PML, infinite elements and an iterative BEM as mesh truncation methods for HP self-adaptive procedures in electromagnetics

    Get PDF
    Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case

    Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates

    Get PDF
    High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements

    Efficient implementation of high-order finite elements for Helmholtz problems

    No full text
    Computational modeling remains key to the acoustic design of various applications, but it is constrained by the cost of solving large Helmholtz problems at high frequencies. This paper presents an efficient implementation of the high-order Finite Element Method for tackling large-scale engineering problems arising in acoustics. A key feature of the proposed method is the ability to select automatically the order of interpolation in each element so as to obtain a target accuracy while minimising the cost. This is achieved using a simple local a priori error indicator. For simulations involving several frequencies, the use of hierarchic shape functions leads to an efficient strategy to accelerate the assembly of the finite element model. The intrinsic performance of the high-order FEM for 3D Helmholtz problem is assessed and an error indicator is devised to select the polynomial order in each element. A realistic 3D application is presented in detail to demonstrate the reduction in computational costs and the robustness of the a priori error indicator. For this test case the proposed method accelerates the simulation by an order of magnitude and requires less than a quarter of the memory needed by the standard FEM

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Entanglement production in Quantized Chaotic Systems

    Full text link
    Quantum chaos is a subject whose major goal is to identify and to investigate different quantum signatures of classical chaos. Here we study entanglement production in coupled chaotic systems as a possible quantum indicator of classical chaos. We use coupled kicked tops as a model for our extensive numerical studies. We find that, in general, presence of chaos in the system produces more entanglement. However, coupling strength between two subsystems is also very important parameter for the entanglement production. Here we show how chaos can lead to large entanglement which is universal and describable by random matrix theory (RMT). We also explain entanglement production in coupled strongly chaotic systems by deriving a formula based on RMT. This formula is valid for arbitrary coupling strengths, as well as for sufficiently long time. Here we investigate also the effect of chaos on the entanglement production for the mixed initial state. We find that many properties of the mixed state entanglement production are qualitatively similar to the pure state entanglement production. We however still lack an analytical understanding of the mixed state entanglement production in chaotic systems.Comment: 16 pages, 5 figures. To appear in Pramana:Journal of Physic
    corecore