12,718 research outputs found
Six Years of ScoX-1 Monitoring with BeppoSAX Wide Field Cameras
We performed a systematic analysis of 54 Wide Field Camera (WFC) observations
of ScoX-1 available in the BeppoSAX public archive. Observations span over the
six years of BeppoSAX mission lifetime and include 690 hr of data. We searched
for shifts and shape changes of the Z pattern in the color-color diagrams. We
find that the Z pattern occupies most of the time the same locus in the
color-color diagram. There are however a few exceptions, which are discussed in
detail.Comment: 4 Pages, 4 figures. To appear in Proc. of the BeppoSAX Symposium:
"The Restless High-Energy Universe", E.P.J. van den Heuvel, J.J.M. in 't
Zand, and R.A.M.J. Wijers (Eds
Isolation of gravitational waves from displacement noise and utility of a time-delay device
Interferometers with kilometer-scale arms have been built for
gravitational-wave detections on the ground; ones with much longer arms are
being planned for space-based detection. One fundamental motivation for long
baseline interferometry is from displacement noise. In general, the longer the
arm length L, the larger the motion the gravitational-wave induces on the test
masses, until L becomes comparable to the gravitational wavelength. Recently,
schemes have been invented, in which displacement noises can be evaded by
employing differences between the influence of test-mass motions and that of
gravitational waves on light propagation. However, in these schemes, such
differences only becomes significant when L approaches the gravitational
wavelength, and shot-noise limited sensitivity becomes worse than that of
conventional configurations by a factor of at least (f L/c)^(-2), for f<c/L.
Such a factor, although can be overcome theoretically by employing high optical
powers, makes these schemes quite impractical. In this paper, we explore the
use of time delay in displacement-noise-free interferometers, which can improve
their shot-noise-limited sensitivity at low frequencies, to a factor of (f
L/c)^(-1) of the shot-noise-limited sensitivity of conventional configurations.Comment: 10 pages, 12 figures, a proceeding for the Spanish Relativity Meeting
ERE 200
Gravitational effects on a rigid Casimir cavity
Vacuum fluctuations produce a force acting on a rigid Casimir cavity in a
weak gravitational field. Such a force is here evaluated and is found to have
opposite direction with respect to the gravitational acceleration; the order of
magnitude for a multi-layer cavity configuration is analyzed and experimental
detection is discussed, bearing in mind the current technological resources.Comment: 7 pages, Latex. Talk given at the Fifth Leipzig Workshop on Quantum
Field Theory under the Influence of External Conditions, September 200
Tubulin nitration in human gliomas
Immunohistochem. and biochem. investigations showed that significant protein nitration occurs in human gliomas, esp. in grade IV glioblastomas at the level of astrocytes and oligodendrocytes and neurons. Enhanced alpha-tubulin immunoreactivity was co-present in the same elements in the glioblastomas. Proteomic methodologies were employed to identify a nitrated protein band at 55 kDa as alpha-tubulin. Peptide mass fingerprinting procedures demonstrated that tubulin is nitrated at Tyr224 in grade IV tumor samples but is unmodified in grade I samples and in non-cancerous brain tissue. These results provide the first characterization of endogenously nitrated tubulin from human tumor samples
Performance of the diamond active target prototype for the PADME experiment at the DANE BTF
The PADME experiment at the DANE Beam-Test Facility (BTF) is designed
to search for the gauge boson of a new interaction in the process
ee+, using the intense positron beam hitting a
light target. The , usually referred as dark photon, is assumed to
decay into invisible particles of a secluded sector and it can be observed by
searching for an anomalous peak in the spectrum of the missing mass measured in
events with a single photon in the final state. The measurement requires the
determination of the 4-momentum of the recoil photon, performed by a
homogeneous, highly segmented BGO crystals calorimeter. A significant
improvement of the missing mass resolution is possible using an active target
capable to determine the average position of the positron bunch with a
resolution of less than 1 mm. This report presents the performance of a real
size PADME active target made of a thin (50 m) diamond
sensor, with graphitic strips produced via laser irradiation on both sides. The
measurements are based on data collected in a beam test at the BTF in November
2015.Comment: 7 pages, 10 figure
Increasing biomass in Amazonian forest plots
A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 ± 0.43 Mg per hectare per year (ha-1 yr-1), where 1 ha = 104 m2), or 0.98 ± 0.38 Mg ha-1 yr-1 if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades
Lines on projective varieties and applications
The first part of this note contains a review of basic properties of the
variety of lines contained in an embedded projective variety and passing
through a general point. In particular we provide a detailed proof that for
varieties defined by quadratic equations the base locus of the projective
second fundamental form at a general point coincides, as a scheme, with the
variety of lines. The second part concerns the problem of extending embedded
projective manifolds, using the geometry of the variety of lines. Some
applications to the case of homogeneous manifolds are included.Comment: 15 pages. One example removed; one remark and some references added;
typos correcte
Performance of a 1200m long suspended Fabry-Perot cavity
Using one arm of the Michelson interferometer and the power recycling mirror
of the interferometric gravitational wave detector GEO600, we created a
Fabry-Perot cavity with a length of 1200 m. The main purpose of this experiment
was to gather first experience with the main optics, its suspensions and the
corresponding control systems. The residual displacement of a main mirror is
about 150 nm rms. By stabilising the length of the 1200 m long cavity to the
pre-stabilised laser beam we achieved an error point frequency noise of 0.1
mHz/sqrt(Hz) at 100 Hz Fourier frequency. In addition we demonstrated the
reliable performance of all included subsystems by several 10-hour-periods of
continuous stable operation. Thus the full frequency stabilisation scheme for
GEO600 was successfully tested.Comment: Amaldi 4 (Perth 2001) conference proceedings, 10 pages, 8 figure
Earth-Moon Lagrangian points as a testbed for general relativity and effective field theories of gravity
We first analyse the restricted four-body problem consisting of the Earth, the Moon and the Sun as the primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the classical case the vehicle moves on a trajectory about the libration points for at least 700 days before escaping away. We show that this is true also if the modified long-distance Newtonian potential of effective gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words, we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity. By virtue of the effective-gravity correction to the long-distance form of the potential among two point masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find quantum corrections of order two millimeters, whereas for Lagrangian points of unstable equilibrium we find quantum corrections below a millimeter. In the latter case, for the point L1, general relativity corrects Newtonian theory by 7.61 meters, comparable, as an order of magnitude, with the lunar geodesic precession of about 3 meters per orbit. The latter is a cumulative effect accurately measured at the centimeter level through the lunar laser ranging positioning technique. Thus, it is possible to study a new laser ranging test of general relativity to measure the 7.61-meter correction to the L1 Lagrangian point, an observable never used before in the Sun-Earth-Moon system. Performing such an experiment requires controlling the propulsion to precisely reach L1, an instrumental accuracy comparable to the measurement of the lunar geodesic precession, understanding systematic effects resulting from thermal radiation and multi-body gravitational perturbations. This will then be the basis to consider a second-generation experiment to study deviations of effective field theories of gravity from general relativity in the Sun-Earth-Moon system
- …
