1,116 research outputs found
The RAMNI airborne lidar for cloud and aerosol research
We describe an airborne lidar for the characterization of atmospheric aerosol. The system has been set up in response to the need to monitor extended regions where the air traffic may be posed at risk by the presence of potentially harmful volcanic ash, and to study the characteristics of volcanic emissions both near the source region and when transported over large distances. The lidar provides backscatter and linear depolarization profiles at 532 nm, from which aerosol and cloud properties can be derived. The paper presents the characteristics and capabilities of the lidar system and gives examples of its airborne deployment. Observations from three flights, aimed at assessing the system capabilities in unperturbed atmospheric conditions, and at characterizing the emissions near a volcanic ash source (Mt. Etna) and transported far away from the source, are presented and discussed
Optimization of net power density in Reverse Electrodialysis
Reverse Electrodialysis (RED) extracts electrical energy from the salinity difference between two solutions using selective ion exchange membranes. In RED, conditions yielding a large net power density (NPD) are generally desired, due to the still large cost of the membranes. NPD depends on a large number of physical and geometric parameters. Some of these, for example the inlet concentrations of concentrate and diluate, can be regarded as “scenario” variables, imposed by external constraints (e.g., availability) or chosen by different criteria than NPD maximization. Others, namely the thicknesses HCONC, HDIL and the velocities UCONC, UDIL in the concentrate and diluate channels, can be regarded as free design parameters and can be chosen so as to maximize NPD. In the present study, a simplified model of a RED stack was coupled with an optimization algorithm in order to determine the conditions of maximum NPD in the space of the variables HCONC, HDIL,UCONC, UDIL for different sets of “scenario” variables. The study shows that an optimal choice of the free design parameters for any given scenario, as opposed to the adoption of standard fixed values for the same parameters, may provide significant improvements in NPD
A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Cl--CHCl pre-reaction complex with the VENUS suite of codes
The role of vibrational excitation of reactants in driving reactions
involving polyatomic species has been often studied by means of classical or
quasi-classical trajectory simulations. We propose a different approach based
on investigation of vibrational features of the Cl--CHCl pre-reaction
complex for the Cl + CHCl SN reaction. We present vibrational power
spectra and frequency estimates for the title pre-reaction complex calculated
at the level of classical, semiclassical, and second-order vibrational
perturbation theory on a pre-existing analytical potential energy surface. The
main goals of the paper are the study of anharmonic effects and understanding
of vibrational couplings that permit energy transfer between the collisional
kinetic energy and the internal vibrations of the reactants. We provide both
classical and quantum pictures of intermode couplings and show that the SN2
mechanism is favored by the coupling of a C--Cl bend involving the Cl
projectile with the CH rocking motion of the target molecule. We also
illustrate how the routines needed for semiclassical vibrational spectroscopy
simulations can be interfaced in a user-friendly way to pre-existing molecular
dynamics software. In particular, we present an implementation of semiclassical
spectroscopy into the VENUS suite of codes, thus providing a useful
computational tool for users who are not experts of semiclassical dynamics
Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band
This paper presents the project Earth Cooling by Water
Vapor Radiation, an observational programme, which aims at
developing a database of spectrally resolved far infrared
observations, in atmospheric dry conditions, in order to
validate radiative transfer models and test the quality of water
vapor continuum and line parameters. The project provides
the very first set of far-infrared spectral downwelling
radiance measurements, in dry atmospheric conditions,
which are complemented with Raman Lidar-derived
temperature and water vapor profiles
Lagrangian analysis of microphysical and chemical processes in the Antarctic stratosphere: a case study
We investigated chemical and microphysical processes in the late winter in the Antarctic lower stratosphere, after the first chlorine activation and initial ozone depletion. We focused on a time interval when both further chlorine activation and ozone loss, but also chlorine deactivation, occur.We performed a comprehensive Lagrangian analysis to simulate the evolution of an air mass along a 10-day trajectory, coupling a detailed microphysical box model to a chemistry model. Model results have been compared with in situ and remote sensing measurements of particles and ozone at the start and end points of the trajectory, and satellite measurements of key chemical species and clouds along it.Different model runs have been performed to understand the relative role of solid and liquid polar stratospheric cloud (PSC) particles for the heterogeneous chemistry, and for the denitrification caused by particle sedimentation. According to model results, under the conditions investigated, ozone depletion is not affected significantly by the presence of nitric acid trihydrate (NAT) particles, as the observed depletion rate can equally well be reproduced by heterogeneous chemistry on cold liquid aerosol, with a surface area density close to background values.Under the conditions investigated, the impact of denitrification is important for the abundances of chlorine reservoirs after PSC evaporation, thus stressing the need to use appropriate microphysical models in the simulation of chlorine deactivation. We found that the effect of particle sedimentation and denitrification on the amount of ozone depletion is rather small in the case investigated. In the first part of the analyzed period, when a PSC was present in the air mass, sedimentation led to a smaller available particle surface area and less chlorine activation, and thus less ozone depletion. After the PSC evaporation, in the last 3 days of the simulation, denitrification increases ozone loss by hampering chlorine deactivation
Vertical distribution of aerosol optical properties in the Po Valley during the 2012 summer campaigns
Studying the vertical distribution of aerosol particle physical and chemical properties in the troposphere is essential to understand the relative importance of local emission processes vs. long-range transport for column-integrated aerosol properties (e.g. the aerosol optical depth, AOD, affecting regional climate) as well as for the aerosol burden and its impacts on air quality at the ground. The main objective of this paper is to investigate the transport of desert dust in the middle troposphere and its intrusion into the planetary boundary layer (PBL) over the Po Valley (Italy), a region considered one of the greatest European pollution hotspots for the frequency that particulate matter (PM) limit values are exceeded. Events of mineral aerosol uplift from local (soil) sources and phenomena of hygroscopic growth at the ground are also investigated, possibly affecting the PM concentration in the region as well. During the PEGASOS 2012 field campaign, an integrated observing–modelling system was set up based on near-surface measurements (particle concentration and chemistry), vertical profiling (backscatter coefficient profiles from lidar and radiosoundings) and Lagrangian air mass transport simulations by FLEXPART model. Measurements were taken at the San Pietro Capofiume supersite (44°39′ N, 11°37′ E; 11 m a.s.l.), located in a rural area relatively close to some major urban and industrial emissive areas in the Po Valley. Mt. Cimone (44°12′ N, 10°42′ E; 2165 m a.s.l.) WMO/GAW station observations are also included in the study to characterize regional-scale variability. Results show that, in the Po Valley, aerosol is detected mainly below 2000 m a.s.l. with a prevalent occurrence of non-depolarizing particles ( > 50 % throughout the campaign) and a vertical distribution modulated by the PBL daily evolution. Two intense events of mineral dust transport from northern Africa (19–21 and 29 June to 2 July) are observed, with layers advected mainly above 2000 m, but subsequently sinking and mixing in the PBL. As a consequence, a non-negligible occurrence of mineral dust is observed close to the ground ( ~7 % of occurrence during a 1-month campaign). The observations unambiguously show Saharan dust layers intruding the Po Valley mixing layer and directly affecting the aerosol concentrations near the surface. Finally, lidar observations also indicate strong variability in aerosol on shorter timescales (hourly). Firstly, these highlight events of hygroscopic growth of anthropogenic aerosol, visible as shallow layers of low depolarization near the ground. Such events are identified during early morning hours at high relative humidity (RH) conditions (RH > 80 %). The process is observed concurrently with high PM1 nitrate concentration (up to 15 µg cm−3) and hence mainly explicable by deliquescence of fine anthropogenic particles, and during mineral dust intrusion episodes, when water condensation on dust particles could instead represent the dominant contribution. Secondly, lidar images show frequent events (mean daily occurrence of ~ 22 % during the whole campaign) of rapid uplift of mineral depolarizing particles in afternoon–evening hours up to 2000 m a.s.l. height. The origin of such particles cannot be directly related to long-range transport events, being instead likely linked to processes of soil particle resuspension from agricultural lands
Coeliac disease: Oral ulcer prevalence, assessment of risk and association with gluten-free diet in children.
AIMS:
Oral mucosal lesions may be markers of chronic gastrointestinal disorders, such as those causing malabsorption. Our objectives were to assess the prevalence of recurrent oral aphthous-like ulcers in coeliac disease patients living in the Mediterranean area, and to evaluate the impact of a gluten-free diet.
METHODS:
A test group of 269 patients (age range 3-17 years) with coeliac disease confirmed both serologically and histologically was compared with a control group of 575 otherwise clinically healthy subjects for the presence, or a positive history of aphthous-like ulcers. Coeliac disease patients with aphthous-like ulcers were re-evaluated 1-year after starting a gluten-free diet.
RESULTS:
Aphthous-like ulcers were found significantly more frequently in coeliac disease, in 22.7% (61/269) of patients with coeliac disease versus 7.1% (41/575) of controls (p=<0.0001; chi-square=41.687; odds ratio=4.3123; 95% confidence interval=2.7664:6.722). Most coeliac disease patients with aphthous-like ulcers and adhering strictly to gluten-free diet (71.7%; 33/46) reported significant improvement on gluten-free diet, with no or reduced episodes of aphthous-like ulcers (p=0.0003; chi-square=13.101; odds ratio=24.67; 95% confidence interval=2.63:231.441).
CONCLUSIONS:
The epidemiological association found between coeliac disease and aphthous-like ulcers suggests that recurrent aphthous-like ulcers should be considered a risk indicator for coeliac disease, and that gluten-free diet leads to ulcer amelioration
Oral Mucosa of celiac disease patients produces anti-endomysial and anti-transglutaminase antibodes. Diagnostic usefulness of an in vitro culture system
Comparison of vertical aerosol extinction coefficients from in-situ and LIDAR measurements
Vertical profiles of aerosol optical properties were explored in a case study near the San Pietro Capofiume (SPC) ground station during the PEGASOS Po Valley campaign in the summer of 2012. A Zeppelin NT airship was employed to investigate the effect of the dynamics of the planetary boundary layer at altitudes between ~ 50–800 m above ground. Determined properties included the aerosol size distribution, the hygroscopic growth factor, the effective index of refraction and the light absorption coefficient. The first three parameters were used to retrieve the light scattering coefficient. Simultaneously, direct measurements of both the scattering and absorption coefficient were carried out at the SPC ground station. Additionally, a LIDAR system provided aerosol extinction coefficients for a vertically resolved comparison between in-situ and remote sensing results. First, the airborne results at low altitudes were validated with the ground measurements. Agreement within approximately ±25 and ±20% was found for the dry scattering and absorption coefficient, respectively. The single scattering albedo, ranged between 0.83 to 0.95, indicating the importance of the absorbing particles in the Po Valley region. A clear layering of the atmosphere was observed during the beginning of the flight (until ~ 10 local time) before the mixed layer (ML) was fully developed. Highest extinction coefficients were found at low altitudes, in the new ML, while values in the residual layer, which could be probed at the beginning of the flight at elevated altitudes, were lower. At the end of the flight (after ~ 12 local time) the ML was fully developed, resulting in constant extinction coefficients at all altitudes measured on the Zeppelin NT. LIDAR results captured these dynamic features well and good agreement was found for the extinction coefficients compared to the in-situ results, using fixed LIDAR ratios (LR) between 30 and 70 sr for the altitudes probed with the Zeppelin. These LR are consistent with values for continental aerosol particles that can be expected in this region
Ordering and Demixing Transitions in Multicomponent Widom-Rowlinson Models
We use Monte Carlo techniques and analytical methods to study the phase
diagram of multicomponent Widom-Rowlinson models on a square lattice: there are
M species all with the same fugacity z and a nearest neighbor hard core
exclusion between unlike particles. Simulations show that for M between two and
six there is a direct transition from the gas phase at z < z_d (M) to a demixed
phase consisting mostly of one species at z > z_d (M) while for M \geq 7 there
is an intermediate ``crystal phase'' for z lying between z_c(M) and z_d(M). In
this phase, which is driven by entropy, particles, independent of species,
preferentially occupy one of the sublattices, i.e. spatial symmetry but not
particle symmetry is broken. The transition at z_d(M) appears to be first order
for M \geq 5 putting it in the Potts model universality class. For large M the
transition between the crystalline and demixed phase at z_d(M) can be proven to
be first order with z_d(M) \sim M-2 + 1/M + ..., while z_c(M) is argued to
behave as \mu_{cr}/M, with \mu_{cr} the value of the fugacity at which the one
component hard square lattice gas has a transition, and to be always of the
Ising type. Explicit calculations for the Bethe lattice with the coordination
number q=4 give results similar to those for the square lattice except that the
transition at z_d(M) becomes first order at M>2. This happens for all q,
consistent with the model being in the Potts universality class.Comment: 26 pages, 15 postscript figure
- …
