1,001 research outputs found
Diffusion and jump-length distribution in liquid and amorphous CuZr
Using molecular dynamics simulation, we calculate the distribution of atomic
jum ps in CuZr in the liquid and glassy states. In both states
the distribution of jump lengths can be described by a temperature independent
exponential of the length and an effective activation energy plus a
contribution of elastic displacements at short distances. Upon cooling the
contribution of shorter jumps dominates. No indication of an enhanced
probability to jump over a nearest neighbor distance was found. We find a
smooth transition from flow in the liquid to jumps in the g lass. The
correlation factor of the diffusion constant decreases with decreasing
temperature, causing a drop of diffusion below the Arrhenius value, despite an
apparent Arrhenius law for the jump probability
Quantum Invariants, Modular Forms, and Lattice Points II
We study the SU(2) Witten--Reshetikhin--Turaev invariant for the Seifert
fibered homology spheres with M-exceptional fibers. We show that the WRT
invariant can be written in terms of (differential of) the Eichler integrals of
modular forms with weight 1/2 and 3/2. By use of nearly modular property of the
Eichler integrals we shall obtain asymptotic expansions of the WRT invariant in
the large-N limit. We further reveal that the number of the gauge equivalent
classes of flat connections, which dominate the asymptotics of the WRT
invariant in N ->\infinity, is related to the number of integral lattice points
inside the M-dimensional tetrahedron
Experimental study on the influence of dimethylamine on the detection of gas phase sulfuric acid using chemical ionization mass spectrometry (CIMS)
Based on quantum chemistry calculations it has been suggested that the quantitative detection of gas phase sulfuric acid (H_2SO_4) by use of Chemical Ionization Mass Spectrometry (CIMS) could be biased in the presence of gas phase amines such as dimethylamine (DMA). An experiment was set up at the CLOUD aerosol chamber to test the quantitative detection of H_2SO_4 by CIMS by directly comparing the measured H_2SO_4 with and without DMA being present in the sample air. It was found that the H_2SO_4 cluster distribution changes but the CIMS detection efficiency is not strongly influenced
A continuation of base-line studies for environmentally monitoring Space Transportation Systems (STS) at John F. Kennedy Space Center. Volume 4: Threatened and endangered species of the Kennedy Space Center. Part 2: Threatened and endangered birds and other threatened and endangered forms
Data are presented which were collected by ground and aerial surveillance of 37 species of birds observed within the environs of KSC which are on lists of rare and endangered biota in Florida. Additional information was obtained on other threatened species such as the West Indian manatee, the salt marsh snake, the Indigo snake, the Gopher tortoise, the American alligator, and the Florida mouse. Results of the literature search were used to obtain a historical perspective and aid in the analysis of the field data collected
A continuation of base-line studies for environmentally monitoring Space Transportation Systems (STS) at John F. Kennedy Space Center. Volume 4: Threatened and endangered species of the Kennedy Space Center. Part 1: Marine turtle studies
The status of marine turtle populations in the KSC area was studied using data from previous results from ground and aerial surveillance conducted from 1976 to April 1979. During ground surveillance, various data were recorded on emergent turtles such as: species, weight, tag number (if previously tagged), time discovered, activity at discovery and the location of discovery. Observations were also made on nesting and reproductive characteristics, population estimates, immigration and emigration and growth rate of the turtles. Mortality studies were additionally made and autopsies performed on dead turtles found in the area. It is concluded that further mortality documentation should be done just prior to and just after a future space launch operation in order to accurately assess the cause and effect relationship of such a launch on the turtle population
The HPS electromagnetic calorimeter
The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier
Unimodality Problems in Ehrhart Theory
Ehrhart theory is the study of sequences recording the number of integer
points in non-negative integral dilates of rational polytopes. For a given
lattice polytope, this sequence is encoded in a finite vector called the
Ehrhart -vector. Ehrhart -vectors have connections to many areas of
mathematics, including commutative algebra and enumerative combinatorics. In
this survey we discuss what is known about unimodality for Ehrhart
-vectors and highlight open questions and problems.Comment: Published in Recent Trends in Combinatorics, Beveridge, A., et al.
(eds), Springer, 2016, pp 687-711, doi 10.1007/978-3-319-24298-9_27. This
version updated October 2017 to correct an error in the original versio
Immunological characterization of chromogranins A and B and secretogranin II in the bovine pancreatic islet
Antisera against chromogranin A and B and secretogranin II were used for analysing the bovine pancreas by immunoblotting and immunohistochemistry. All three antigens were found in extracts of fetal pancreas by one dimensional immunoblotting. A comparison with the soluble proteins of chromaffin granules revealed that in adrenal medulla and in pancreas antigens which migrated identically in electrophoresis were present. In immunohistochemistry, chromogranin A was found in all pancreatic endocrine cell types with the exception of most pancreatic polypeptide-(PP-) producing cells. For chromogranin B, only a faint immunostaining was obtained. For secretorgranin II, A-and B-cells were faintly positive, whereas the majority of PP-cells exhibited a strong immunostaining for this antigen. These results establish that chromogranins A and B and secretogranin II are present in the endocrine pancreas, but that they exhibit a distinct cellular localization
Voronoi-Delaunay analysis of normal modes in a simple model glass
We combine a conventional harmonic analysis of vibrations in a one-atomic
model glass of soft spheres with a Voronoi-Delaunay geometrical analysis of the
structure. ``Structure potentials'' (tetragonality, sphericity or perfectness)
are introduced to describe the shape of the local atomic configurations
(Delaunay simplices) as function of the atomic coordinates. Apart from the
highest and lowest frequencies the amplitude weighted ``structure potential''
varies only little with frequency. The movement of atoms in soft modes causes
transitions between different ``perfect'' realizations of local structure. As
for the potential energy a dynamic matrix can be defined for the ``structure
potential''. Its expectation value with respect to the vibrational modes
increases nearly linearly with frequency and shows a clear indication of the
boson peak. The structure eigenvectors of this dynamical matrix are strongly
correlated to the vibrational ones. Four subgroups of modes can be
distinguished
Evaporation of sulfate aerosols at low relative humidity
Evaporation of sulfuric acid from particles can be important in the atmospheres of Earth and Venus. However, the equilibrium constant for the dissociation of H2SO4 to bisulfate ions, which is the one of the fundamental parameters controlling the evaporation of sulfur particles, is not well constrained. In this study we explore the volatility of sulfate particles at very low relative humidity. We measured the evaporation of sulfur particles versus temperature and relative humidity in the CLOUD chamber at CERN. We modelled the observed sulfur particle shrinkage with the ADCHAM model. Based on our model results, we conclude that the sulfur particle shrinkage is mainly governed by H2SO4 and potentially to some extent by SO3 evaporation. We found that the equilibrium constants for the dissociation of H2SO4 to HSO4-(KH2SO4) and the dehydration of H2SO4 to SO3 ((x) K-SO3) are K H2SO4 = 2-4 x 10(9) mol kg(-1) and (x) K SO3 >= 1.4 x 10(10) at 288.8 +/- 5 K.Peer reviewe
- …
