16,266 research outputs found
Detailed design specification for the ALT Shuttle Information Extraction Subsystem (SIES)
The approach and landing test (ALT) shuttle information extraction system (SIES) is described in terms of general requirements and system characteristics output products and processing options, output products and data sources, and system data flow. The ALT SIES is a data reduction system designed to satisfy certain data processing requirements for the ALT phase of the space shuttle program. The specific ALT SIES data processing requirements are stated in the data reduction complex approach and landing test data processing requirements. In general, ALT SIES must produce time correlated data products as a result of standardized data reduction or special purpose analytical processes. The main characteristics of ALT SIES are: (1) the system operates in a batch (non-interactive) mode; (2) the processing is table driven; (3) it is data base oriented; (4) it has simple operating procedures; and (5) it requires a minimum of run time information
A recalibration of IUE NEWSIPS low dispersion data
While the low dispersion IUE NEWSIPS data products represent a significant
improvement over original IUE SIPS data, they still contain serious systematic
effects which compromise their utility for certain applications. We show that
NEWSIPS low resolution data are internally consistent to only 10-15% at best,
with the majority of the problem due to time dependent systematic effects. In
addition, the NEWSIPS flux calibration is shown to be inconsistent by nearly
10%.
We examine the origin of these problems and proceed to formulate and apply
algorithms to correct them to ~ 3% level -- a factor of 5 improvement in
accuracy. Because of the temporal systematics, transforming the corrected data
to the IUE flux calibration becomes ambiguous. Therefore, we elect to transform
the corrected data onto the HST FOS system. This system is far more
self-consistent, and transforming the IUE data to it places data from both
telescopes on a single system.
Finally, we argue that much of the remaining 3% systematic effects in the
corrected data is traceable to problems with the NEWSIPS intensity
transformation function (ITF). The accuracy could probably be doubled by
rederiving the ITF.Comment: Submitted to ApJ Supplement, 35 pages, 13 figures, LaTeX - AASTEX
aas2pp4.st
Field localization on a brane intersection in anti-de Sitter spacetime
We discuss the localization of scalar, fermion, and gauge field zero modes on
a brane that resides at the intersection of two branes in
six-dimensional anti-de Sitter space. This set-up has been introduced in the
context of brane world models and, higher-dimensional versions of it, in string
theory. In both six- and ten-dimensional cases, it has been shown that
four-dimensional gravity can be reproduced at the intersection, due to the
existence of a massless, localized graviton zero-mode. However, realistic
scenarios require also the Standard Model to be localized on the brane. In
this paper, we discuss under which conditions a higher-dimensional field
theory, propagating on the above geometry, can have a zero-mode sector
localized at the intersection and find that zero modes can be localized only if
masses and couplings to the background curvature satisfy certain relations. We
also consider the case when other 4-branes cut the bulk at some distance from
the intersection and argue that, in the probe brane approximation, there is no
significant effect on the localization properties at the brane. The case of
bulk fermions is particularly interesting, since the properties of the geometry
allow localization of chiral modes independently.Comment: 13 pages, 3 figures, the version to be published in PR
Two-fluid magnetic island dynamics in slab geometry: II - Islands interacting with resistive walls or static external resonant magnetic perturbations
The dynamics of a propagating magnetic island interacting with a resistive
wall or a static external magnetic perturbation is investigated using
two-fluid, drift-MHD theory in slab geometry. In both cases, the island
equation of motion is found to take exactly the same form as that predicted by
single-fluid MHD theory. Three separate ion polarization terms are found in the
Rutherford island width evolution equation. The first is the drift-MHD
polarization term for an isolated island, and is completely unaffected by
interaction with a wall or magnetic perturbation. Next, there is the
polarization term due to interaction with a wall or magnetic perturbation which
is predicted by single-fluid MHD theory. Finally, there is a hybrid of the
other two polarization terms. The sign of this term depends on many factors.
However, under normal conditions, it is stabilizing if the unperturbed island
propagates in the ion diamagnetic direction (in the lab. frame), and
destabilizing if it propagates in the electron diamagnetic direction
- …
