261 research outputs found
Hardness of approximation for quantum problems
The polynomial hierarchy plays a central role in classical complexity theory.
Here, we define a quantum generalization of the polynomial hierarchy, and
initiate its study. We show that not only are there natural complete problems
for the second level of this quantum hierarchy, but that these problems are in
fact hard to approximate. Using these techniques, we also obtain hardness of
approximation for the class QCMA. Our approach is based on the use of
dispersers, and is inspired by the classical results of Umans regarding
hardness of approximation for the second level of the classical polynomial
hierarchy [Umans, FOCS 1999]. The problems for which we prove hardness of
approximation for include, among others, a quantum version of the Succinct Set
Cover problem, and a variant of the local Hamiltonian problem with hybrid
classical-quantum ground states.Comment: 21 pages, 1 figure, extended abstract appeared in Proceedings of the
39th International Colloquium on Automata, Languages and Programming (ICALP),
pages 387-398, Springer, 201
Quantum Property Testing
A language L has a property tester if there exists a probabilistic algorithm
that given an input x only asks a small number of bits of x and distinguishes
the cases as to whether x is in L and x has large Hamming distance from all y
in L. We define a similar notion of quantum property testing and show that
there exist languages with quantum property testers but no good classical
testers. We also show there exist languages which require a large number of
queries even for quantumly testing
Quantum Weakly Nondeterministic Communication Complexity
We study the weakest model of quantum nondeterminism in which a classical
proof has to be checked with probability one by a quantum protocol. We show the
first separation between classical nondeterministic communication complexity
and this model of quantum nondeterministic communication complexity for a total
function. This separation is quadratic.Comment: 12 pages. v3: minor correction
Counting dependent and independent strings
The paper gives estimations for the sizes of the the following sets: (1) the
set of strings that have a given dependency with a fixed string, (2) the set of
strings that are pairwise \alpha independent, (3) the set of strings that are
mutually \alpha independent. The relevant definitions are as follows: C(x) is
the Kolmogorov complexity of the string x. A string y has \alpha -dependency
with a string x if C(y) - C(y|x) \geq \alpha. A set of strings {x_1, \ldots,
x_t} is pairwise \alpha-independent if for all i different from j, C(x_i) -
C(x_i | x_j) \leq \alpha. A tuple of strings (x_1, \ldots, x_t) is mutually
\alpha-independent if C(x_{\pi(1)} \ldots x_{\pi(t)}) \geq C(x_1) + \ldots +
C(x_t) - \alpha, for every permutation \pi of [t]
Impossibility of independence amplification in Kolmogorov complexity theory
The paper studies randomness extraction from sources with bounded
independence and the issue of independence amplification of sources, using the
framework of Kolmogorov complexity. The dependency of strings and is
, where
denotes the Kolmogorov complexity. It is shown that there exists a
computable Kolmogorov extractor such that, for any two -bit strings with
complexity and dependency , it outputs a string of length
with complexity conditioned by any one of the input
strings. It is proven that the above are the optimal parameters a Kolmogorov
extractor can achieve. It is shown that independence amplification cannot be
effectively realized. Specifically, if (after excluding a trivial case) there
exist computable functions and such that for all -bit strings and with , then
A Full Characterization of Quantum Advice
We prove the following surprising result: given any quantum state rho on n
qubits, there exists a local Hamiltonian H on poly(n) qubits (e.g., a sum of
two-qubit interactions), such that any ground state of H can be used to
simulate rho on all quantum circuits of fixed polynomial size. In terms of
complexity classes, this implies that BQP/qpoly is contained in QMA/poly, which
supersedes the previous result of Aaronson that BQP/qpoly is contained in
PP/poly. Indeed, we can exactly characterize quantum advice, as equivalent in
power to untrusted quantum advice combined with trusted classical advice.
Proving our main result requires combining a large number of previous tools --
including a result of Alon et al. on learning of real-valued concept classes, a
result of Aaronson on the learnability of quantum states, and a result of
Aharonov and Regev on "QMA+ super-verifiers" -- and also creating some new
ones. The main new tool is a so-called majority-certificates lemma, which is
closely related to boosting in machine learning, and which seems likely to find
independent applications. In its simplest version, this lemma says the
following. Given any set S of Boolean functions on n variables, any function f
in S can be expressed as the pointwise majority of m=O(n) functions f1,...,fm
in S, such that each fi is the unique function in S compatible with O(log|S|)
input/output constraints.Comment: We fixed two significant issues: 1. The definition of YQP machines
needed to be changed to preserve our results. The revised definition is more
natural and has the same intuitive interpretation. 2. We needed properties of
Local Hamiltonian reductions going beyond those proved in previous works
(whose results we'd misstated). We now prove the needed properties. See p. 6
for more on both point
Credimus
We believe that economic design and computational complexity---while already
important to each other---should become even more important to each other with
each passing year. But for that to happen, experts in on the one hand such
areas as social choice, economics, and political science and on the other hand
computational complexity will have to better understand each other's
worldviews.
This article, written by two complexity theorists who also work in
computational social choice theory, focuses on one direction of that process by
presenting a brief overview of how most computational complexity theorists view
the world. Although our immediate motivation is to make the lens through which
complexity theorists see the world be better understood by those in the social
sciences, we also feel that even within computer science it is very important
for nontheoreticians to understand how theoreticians think, just as it is
equally important within computer science for theoreticians to understand how
nontheoreticians think
Constructive Dimension and Turing Degrees
This paper examines the constructive Hausdorff and packing dimensions of
Turing degrees. The main result is that every infinite sequence S with
constructive Hausdorff dimension dim_H(S) and constructive packing dimension
dim_P(S) is Turing equivalent to a sequence R with dim_H(R) <= (dim_H(S) /
dim_P(S)) - epsilon, for arbitrary epsilon > 0. Furthermore, if dim_P(S) > 0,
then dim_P(R) >= 1 - epsilon. The reduction thus serves as a *randomness
extractor* that increases the algorithmic randomness of S, as measured by
constructive dimension.
A number of applications of this result shed new light on the constructive
dimensions of Turing degrees. A lower bound of dim_H(S) / dim_P(S) is shown to
hold for the Turing degree of any sequence S. A new proof is given of a
previously-known zero-one law for the constructive packing dimension of Turing
degrees. It is also shown that, for any regular sequence S (that is, dim_H(S) =
dim_P(S)) such that dim_H(S) > 0, the Turing degree of S has constructive
Hausdorff and packing dimension equal to 1.
Finally, it is shown that no single Turing reduction can be a universal
constructive Hausdorff dimension extractor, and that bounded Turing reductions
cannot extract constructive Hausdorff dimension. We also exhibit sequences on
which weak truth-table and bounded Turing reductions differ in their ability to
extract dimension.Comment: The version of this paper appearing in Theory of Computing Systems,
45(4):740-755, 2009, had an error in the proof of Theorem 2.4, due to
insufficient care with the choice of delta. This version modifies that proof
to fix the error
- …
