5,326 research outputs found
The impact of historical land use change from 1850 to 2000 on particulate matter and ozone
Anthropogenic land use change (LUC) since pre-industrial (1850) has altered the vegetation distribution and density around the world. We use a global model (GEOS-Chem) to assess the attendant changes in surface air quality and the direct radiative forcing (DRF). We focus our analysis on secondary particulate matter and tropospheric ozone formation. The general trend of expansion of managed ecosystems (croplands and pasturelands) at the expense of natural ecosystems has led to an 11 % decline in global mean biogenic volatile organic compound emissions. Concomitant growth in agricultural activity has more than doubled ammonia emissions and increased emissions of nitrogen oxides from soils by more than 50 %. Conversion to croplands has also led to a widespread increase in ozone dry deposition velocity. Together these changes in biosphere-atmosphere exchange have led to a 14 % global mean increase in biogenic secondary organic aerosol (BSOA) surface concentrations, a doubling of surface aerosol nitrate concentrations, and local changes in surface ozone of up to 8.5 ppb. We assess a global mean LUC-DRF of +0.017 Wm−2, −0.071 Wm−2, and −0.01 Wm−2 for BSOA, nitrate, and tropospheric ozone, respectively. We conclude that the DRF and the perturbations in surface air quality associated with LUC are substantial and should be considered alongside changes in anthropogenic emissions and climate feedbacks in chemistry-climate studies.https://www.atmos-chem-phys.net/16/14997/2016/acp-16-14997-2016.pdfhttps://www.atmos-chem-phys.net/16/14997/2016/acp-16-14997-2016.pdfPublished versio
The atom-molecule reaction D plus H2 yields HD plus H studied by molecular beams
Collisions between deuterium atoms and hydrogen molecules were studied in a modulated crossed beam experiment. The relative signal intensity and the signal phase for the product HD from reactive collisions permitted determination of both the angular distribution and HD mean velocity as a function of angle. From these a relative differential reactive scattering cross section in center-of-mass coordinates was deduced. The experiment indicates that reactively formed HD which has little or no internal excitation departs from the collision anisotropically, with maximum amplitude 180 deg from the direction of the incident D beam in center-of-mass coordinates, which shows that the D-H-H reacting configuration is short-lived compared to its rotation time. Non reactive scattering of D by H2 was used to assign absolute values to the differential reactive scattering cross sections
Effects of Hyperbolic Rotation in Minkowski Space on the Modeling of Plasma Accelerators in a Lorentz Boosted Frame
Laser driven plasma accelerators promise much shorter particle accelerators
but their development requires detailed simulations that challenge or exceed
current capabilities. We report the first direct simulations of stages up to 1
TeV from simulations using a Lorentz boosted calculation frame resulting in a
million times speedup, thanks to a frame boost as high as gamma=1300. Effects
of the hyperbolic rotation in Minkowski space resulting from the frame boost on
the laser propagation in the plasma is shown to be key in the mitigation of a
numerical instability that was limiting previous attempts
Modeling laser wakefield accelerators in a Lorentz boosted frame
Modeling of laser-plasma wakefield accelerators in an optimal frame of
reference \cite{VayPRL07} is shown to produce orders of magnitude speed-up of
calculations from first principles. Obtaining these speedups requires
mitigation of a high-frequency instability that otherwise limits effectiveness
in addition to solutions for handling data input and output in a
relativistically boosted frame of reference. The observed high-frequency
instability is mitigated using methods including an electromagnetic solver with
tunable coefficients, its extension to accomodate Perfectly Matched Layers and
Friedman's damping algorithms, as well as an efficient large bandwidth digital
filter. It is shown that choosing the frame of the wake as the frame of
reference allows for higher levels of filtering and damping than is possible in
other frames for the same accuracy. Detailed testing also revealed
serendipitously the existence of a singular time step at which the instability
level is minimized, independently of numerical dispersion, thus indicating that
the observed instability may not be due primarily to Numerical Cerenkov as has
been conjectured. The techniques developed for Cerenkov mitigation prove
nonetheless to be very efficient at controlling the instability. Using these
techniques, agreement at the percentage level is demonstrated between
simulations using different frames of reference, with speedups reaching two
orders of magnitude for a 0.1 GeV class stages. The method then allows direct
and efficient full-scale modeling of deeply depleted laser-plasma stages of 10
GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to
very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for
the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively
Speeding up simulations of relativistic systems using an optimal boosted frame
It can be computationally advantageous to perform computer simulations in a
Lorentz boosted frame for a certain class of systems. However, even if the
computer model relies on a covariant set of equations, it has been pointed out
that algorithmic difficulties related to discretization errors may have to be
overcome in order to take full advantage of the potential speedup. We summarize
the findings, the difficulties and their solutions, and show that the technique
enables simulations important to several areas of accelerator physics that are
otherwise problematic, including self-consistent modeling in three-dimensions
of laser wakefield accelerator stages at energies of 10 GeV and above.Comment: To be published in the proceedings of DPF-2009, Detroit, MI, July
2009, eConf C09072
Risk factors of ischemic stroke and subsequent outcome in hemodialysis patients
Background and purpose:
End stage renal disease (ESRD) requiring hemodialysis (HD) carries up to a 10-fold greater risk of stroke than normal renal function. Knowledge concerning risk factors and management strategies derived from the general population may not be applicable to those with ESRD. We studied a large ESRD population to identify risk factors and outcomes for stroke.
Methods:
All adult patients receiving HD for ESRD from 01/01/2007 to 31/12/2012 were extracted from the electronic patient record. Variables associated with stroke were identified by survival analysis; demographic, clinical, imaging and dialysis related variables were assessed and case-fatality determined. Follow-up was until 31/12/2013.
Results:
1382 patients were identified (mean age 60.5 years, 58.5% male). The prevalence of AF was 21.2% and 59.4% were incident HD patients. 160 (11.6%) experienced a stroke during 3471 patient-years of follow-up (95% ischemic). Stroke incidence was 41.5/1000 patient-years in prevalent and 50.1/1000 patient-years in incident HD patients. Factors associated with stroke on regression analysis were prior stroke, diabetes and age at starting renal replacement therapy. AF was not significantly associated with stroke and warfarin did not affect stroke risk in warfarin treated patients. Fatality was 18.8% at 7, 26.9% at 28 and 56.3% 365 days after stroke.<p></p>
Conclusions:
Incidence of stroke is high in patients with ESRD on HD with high case-fatality. Incident HD patients had the highest stroke incidence. Many, but not all, important risk factors commonly associated with stroke in the general population were not associated with stroke in patients receiving HD
Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels
Narrow bandwidth, high energy photon sources can be generated by Thomson
scattering of laser light from energetic electrons, and detailed control of the
interaction is needed to produce high quality sources. We present analytic
calculations of the energy-angular spectra and photon yield that parametrize
the influences of the electron and laser beam parameters to allow source
design. These calculations, combined with numerical simulations, are applied to
evaluate sources using conventional scattering in vacuum and methods for
improving the source via laser waveguides or plasma channels. We show that the
photon flux can be greatly increased by using a plasma channel to guide the
laser during the interaction. Conversely, we show that to produce a given
number of photons, the required laser energy can be reduced by an order of
magnitude through the use of a plasma channel. In addition, we show that a
plasma can be used as a compact beam dump, in which the electron beam is
decelerated in a short distance, thereby greatly reducing radiation shielding.
Realistic experimental errors such as transverse jitter are quantitatively
shown to be tolerable. Examples of designs for sources capable of performing
nuclear resonance fluorescence and photofission are provided
Iterated Binomial Sums and their Associated Iterated Integrals
We consider finite iterated generalized harmonic sums weighted by the
binomial in numerators and denominators. A large class of these
functions emerges in the calculation of massive Feynman diagrams with local
operator insertions starting at 3-loop order in the coupling constant and
extends the classes of the nested harmonic, generalized harmonic and cyclotomic
sums. The binomially weighted sums are associated by the Mellin transform to
iterated integrals over square-root valued alphabets. The values of the sums
for and the iterated integrals at lead to new
constants, extending the set of special numbers given by the multiple zeta
values, the cyclotomic zeta values and special constants which emerge in the
limit of generalized harmonic sums. We develop
algorithms to obtain the Mellin representations of these sums in a systematic
way. They are of importance for the derivation of the asymptotic expansion of
these sums and their analytic continuation to . The
associated convolution relations are derived for real parameters and can
therefore be used in a wider context, as e.g. for multi-scale processes. We
also derive algorithms to transform iterated integrals over root-valued
alphabets into binomial sums. Using generating functions we study a few aspects
of infinite (inverse) binomial sums.Comment: 62 pages Latex, 1 style fil
- …
