149 research outputs found
Magnetic Cellular Nonlinear Network with Spin Wave Bus for Image Processing
We describe and analyze a cellular nonlinear network based on magnetic
nanostructures for image processing. The network consists of magneto-electric
cells integrated onto a common ferromagnetic film - spin wave bus. The
magneto-electric cell is an artificial two-phase multiferroic structure
comprising piezoelectric and ferromagnetic materials. A bit of information is
assigned to the cell's magnetic polarization, which can be controlled by the
applied voltage. The information exchange among the cells is via the spin waves
propagating in the spin wave bus. Each cell changes its state as a combined
effect of two: the magneto-electric coupling and the interaction with the spin
waves. The distinct feature of the network with spin wave bus is the ability to
control the inter-cell communication by an external global parameter - magnetic
field. The latter makes possible to realize different image processing
functions on the same template without rewiring or reconfiguration. We present
the results of numerical simulations illustrating image filtering, erosion,
dilation, horizontal and vertical line detection, inversion and edge detection
accomplished on one template by the proper choice of the strength and direction
of the external magnetic field. We also present numerical assets on the major
network parameters such as cell density, power dissipation and functional
throughput, and compare them with the parameters projected for other
nano-architectures such as CMOL-CrossNet, Quantum Dot Cellular Automata, and
Quantum Dot Image Processor. Potentially, the utilization of spin waves
phenomena at the nanometer scale may provide a route to low-power consuming and
functional logic circuits for special task data processing
Identification and functional analysis of NOL7 nuclear and nucleolar localization signals
<p>Abstract</p> <p>Background</p> <p>NOL7 is a candidate tumor suppressor that localizes to a chromosomal region 6p23. This locus is frequently lost in a number of malignancies, and consistent loss of NOL7 through loss of heterozygosity and decreased mRNA and protein expression has been observed in tumors and cell lines. Reintroduction of NOL7 into cells resulted in significant suppression of <it>in vivo </it>tumor growth and modulation of the angiogenic phenotype. Further, NOL7 was observed to localize to the nucleus and nucleolus of cells. However, the mechanisms regulating its subcellular localization have not been elucidated.</p> <p>Results</p> <p>An <it>in vitro </it>import assay demonstrated that NOL7 requires cytosolic machinery for active nuclear transport. Using sequence homology and prediction algorithms, four putative nuclear localization signals (NLSs) were identified. NOL7 deletion constructs and cytoplasmic pyruvate kinase (PK) fusion proteins confirmed the functionality of three of these NLSs. Site-directed mutagenesis of PK fusions and full-length NOL7 defined the minimal functional regions within each NLS. Further characterization revealed that NLS2 and NLS3 were critical for both the rate and efficiency of nuclear targeting. In addition, four basic clusters within NLS2 and NLS3 were independently capable of nucleolar targeting. The nucleolar occupancy of NOL7 revealed a complex balance of rapid nucleoplasmic shuttling but low nucleolar mobility, suggesting NOL7 may play functional roles in both compartments. In support, targeting to the nucleolar compartment was dependent on the presence of RNA, as depletion of total RNA or rRNA resulted in a nucleoplasmic shift of NOL7.</p> <p>Conclusions</p> <p>These results identify the minimal sequences required for the active targeting of NOL7 to the nucleus and nucleolus. Further, this work characterizes the relative contribution of each sequence to NOL7 nuclear and nucleolar dynamics, the subnuclear constituents that participate in this targeting, and suggests a functional role for NOL7 in both compartments. Taken together, these results identify the requisite protein domains for NOL7 localization, the kinetics that drive this targeting, and suggest NOL7 may function in both the nucleus and nucleolus.</p
Association of non-alcoholic fatty liver disease with chronic kidney disease: a systematic review and meta-analysis.
To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.
This article is open access.Chronic kidney disease (CKD) is a frequent, under-recognized condition and a risk factor for renal failure and cardiovascular disease. Increasing evidence connects non-alcoholic fatty liver disease (NAFLD) to CKD. We conducted a meta-analysis to determine whether the presence and severity of NAFLD are associated with the presence and severity of CKD.English and non-English articles from international online databases from 1980 through January 31, 2014 were searched. Observational studies assessing NAFLD by histology, imaging, or biochemistry and defining CKD as either estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2 or proteinuria were included. Two reviewers extracted studies independently and in duplicate. Individual participant data (IPD) were solicited from all selected studies. Studies providing IPD were combined with studies providing only aggregate data with the two-stage method. Main outcomes were pooled using random-effects models. Sensitivity and subgroup analyses were used to explore sources of heterogeneity and the effect of potential confounders. The influences of age, whole-body/abdominal obesity, homeostasis model of insulin resistance (HOMA-IR), and duration of follow-up on effect estimates were assessed by meta-regression. Thirty-three studies (63,902 participants, 16 population-based and 17 hospital-based, 20 cross-sectional, and 13 longitudinal) were included. For 20 studies (61% of included studies, 11 cross-sectional and nine longitudinal, 29,282 participants), we obtained IPD. NAFLD was associated with an increased risk of prevalent (odds ratio [OR] 2.12, 95% CI 1.69-2.66) and incident (hazard ratio [HR] 1.79, 95% CI 1.65-1.95) CKD. Non-alcoholic steatohepatitis (NASH) was associated with a higher prevalence (OR 2.53, 95% CI 1.58-4.05) and incidence (HR 2.12, 95% CI 1.42-3.17) of CKD than simple steatosis. Advanced fibrosis was associated with a higher prevalence (OR 5.20, 95% CI 3.14-8.61) and incidence (HR 3.29, 95% CI 2.30-4.71) of CKD than non-advanced fibrosis. In all analyses, the magnitude and direction of effects remained unaffected by diabetes status, after adjustment for other risk factors, and in other subgroup and meta-regression analyses. In cross-sectional and longitudinal studies, the severity of NAFLD was positively associated with CKD stages. Limitations of analysis are the relatively small size of studies utilizing liver histology and the suboptimal sensitivity of ultrasound and biochemistry for NAFLD detection in population-based studies.The presence and severity of NAFLD are associated with an increased risk and severity of CKD. Please see later in the article for the Editors' Summary.Italian Ministry of University/FIRB/MERIT RBNE08NKH7_00
Imaging domain reversal in an ultrathin van der Waals ferromagnet
The recent isolation of two-dimensional van der Waals magnetic materials has
uncovered rich physics that often differs from the magnetic behaviour of their
bulk counterparts. However, the microscopic details of fundamental processes
such as the initial magnetization or domain reversal, which govern the magnetic
hysteresis, remain largely unknown in the ultrathin limit. Here we employ a
widefield nitrogen-vacancy (NV) microscope to directly image these processes in
few-layer flakes of magnetic semiconductor vanadium triiodide (VI). We
observe complete and abrupt switching of most flakes at fields
T (at 5 K) independent of thickness down to two atomic
layers, with no intermediate partially-reversed state. The coercive field
decreases as the temperature approaches the Curie temperature (
K), however, the switching remains abrupt. We then image the initial
magnetization process, which reveals thickness-dependent domain wall depinning
fields well below . These results point to ultrathin VI being a
nucleation-type hard ferromagnet, where the coercive field is set by the
anisotropy-limited domain wall nucleation field. This work illustrates the
power of widefield NV microscopy to investigate magnetization processes in van
der Waals ferromagnets, which could be used to elucidate the origin of the hard
ferromagnetic properties of other materials and explore field- and
current-driven domain wall dynamics.Comment: includes S
Room temperature magnetic phase transition in an electrically-tuned van der Waals ferromagnet
Finding tunable van der Waals (vdW) ferromagnets that operate at above room
temperature is an important research focus in physics and materials science.
Most vdW magnets are only intrinsically magnetic far below room temperature and
magnetism with square-shaped hysteresis at room-temperature has yet to be
observed. Here, we report magnetism in a quasi-2D magnet Cr1.2Te2 observed at
room temperature (290 K). This magnetism was tuned via a protonic gate with an
electron doping concentration up to 3.8 * 10^21 cm^-3. We observed
non-monotonic evolutions in both coercivity and anomalous Hall resistivity.
Under increased electron doping, the coercivities and anomalous Hall effects
(AHEs) vanished, indicating a doping-induced magnetic phase transition. This
occurred up to room temperature. DFT calculations showed the formation of an
antiferromagnetic (AFM) phase caused by the intercalation of protons which
induced significant electron doping in the Cr1.2Te2. The tunability of the
magnetic properties and phase in room temperature magnetic vdW Cr1.2Te2 is a
significant step towards practical spintronic devices.Comment: 18 pages, 4 figure
Mathematical modeling of heat transfer processes of coal waste combustion in a chamber of automated energy generating complex
HDAC Inhibitors Act with 5-aza-2′-Deoxycytidine to Inhibit Cell Proliferation by Suppressing Removal of Incorporated Abases in Lung Cancer Cells
5-aza-2′-deoxycytidine (5-aza-CdR) is used extensively as a demethylating agent and acts in concert with histone deacetylase inhibitors (HDACI) to induce apoptosis or inhibition of cell proliferation in human cancer cells. Whether the action of 5-aza-CdR in this synergistic effect results from demethylation by this agent is not yet clear. In this study we found that inhibition of cell proliferation was not observed when cells with knockdown of DNA methyltransferase 1 (DNMT1), or double knock down of DNMT1-DNMT3A or DNMT1-DNMT3B were treated with HDACI, implying that the demethylating function of 5-aza-CdR may be not involved in this synergistic effect. Further study showed that there was a causal relationship between 5-aza-CdR induced DNA damage and the amount of [3H]-5-aza-CdR incorporated in DNA. However, incorporated [3H]-5-aza-CdR gradually decreased when cells were incubated in [3H]-5-aza-CdR free medium, indicating that 5-aza-CdR, which is an abnormal base, may be excluded by the cell repair system. It was of interest that HDACI significantly postponed the removal of the incorporated [3H]-5-aza-CdR from DNA. Moreover, HDAC inhibitor showed selective synergy with nucleoside analog-induced DNA damage to inhibit cell proliferation, but showed no such effect with other DNA damage stresses such as γ-ray and UV, etoposide or cisplatin. This study demonstrates that HDACI synergistically inhibits cell proliferation with nucleoside analogs by suppressing removal of incorporated harmful nucleotide analogs from DNA
Noise-Robust Radio Frequency Fingerprint Identification Using Denoise Diffusion Model
Securing Internet of Things (IoT) devices presents increasing challenges due to their limited computational and energy resources. Radio Frequency Fingerprint Identification (RFFI) emerges as a promising authentication technique to identify wireless devices through hardware impairments. RFFI performance under low signal-to-noise ratio (SNR) scenarios is significantly degraded because the minute hardware features can be easily swamped in noise. In this paper, we leveraged the diffusion model to effectively restore the RFF under low SNR scenarios. Specifically, we trained a powerful noise predictor and tailored a noise removal algorithm to effectively reduce the noise level in the received signal and restore the device fingerprints. We used Wi-Fi as a case study and created a testbed involving 6 commercial off-the-shelf Wi-Fi dongles and a USRP N210 software-defined radio (SDR) platform. We conducted experimental evaluations on various SNR scenarios. The experimental results show that the proposed algorithm can improve the classification accuracy by up to 34.9%
- …
