744 research outputs found
A New Comparative Definition of Community and Corresponding Identifying Algorithm
In this paper, a new comparative definition for community in networks is
proposed and the corresponding detecting algorithm is given. A community is
defined as a set of nodes, which satisfy that each node's degree inside the
community should not be smaller than the node's degree toward any other
community. In the algorithm, the attractive force of a community to a node is
defined as the connections between them. Then employing attractive force based
self-organizing process, without any extra parameter, the best communities can
be detected. Several artificial and real-world networks, including Zachary
Karate club network and College football network are analyzed. The algorithm
works well in detecting communities and it also gives a nice description for
network division and group formation.Comment: 11 pages, 4 fihure
First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica
We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations
East Asian hydroclimate modulated by the position of the westerlies during Termination I.
Speleothem oxygen isotope records have revolutionized our understanding of the paleo East Asian monsoon, yet there is fundamental disagreement on what they represent in terms of the hydroclimate changes. We report a multiproxy speleothem record of monsoon evolution during the last deglaciation from the middle Yangtze region, which indicates a wetter central eastern China during North Atlantic cooling episodes, despite the oxygen isotopic record suggesting a weaker monsoon. We show that this apparent contradiction can be resolved if the changes are interpreted as a lengthening of the Meiyu rains and shortened post-Meiyu stage, in accordance with a recent hypothesis. Model simulations support this interpretation and further reveal the role of the westerlies in communicating the North Atlantic influence to the East Asian climate
Effective suppression of parametric instabilities with decoupled broadband lasers in plasma
A theoretical analysis for the stimulated Raman scattering (SRS) instability driven by two laser beams with certain frequency difference is presented. It is found that strong coupling and enhanced SRS take place only when the unstable regions for each beam are overlapped in the wavenumber space. Hence a threshold of the beam frequency difference for their decoupling is found as a function of their intensity and plasma density. Based upon this, a strategy to suppress the SRS instability with decoupled broadband lasers (DBLs) is proposed. A DBL can be composed of tens or even hundreds of beamlets, where the beamlets are distributed uniformly in a broad spectrum range such as over 10% of the central frequency. Decoupling among the beamlets is found due to the limited beamlet energy and suitable frequency difference between neighboring beamlets. Particle-in-cell simulations demonstrate that SRS can be almost completely suppressed with DBLs under the laser intensity ∼ 1015 W/cm2. Moreover, stimulated Brillouin scattering (SBS) will be suppressed simultaneously with DBLs can be attractive for driving inertial confined fusion
Downregulation of Rap1GAP contributes to Ras transformation.
Although abundant in well-differentiated rat thyroid cells, Rap1GAP expression was extinguished in a subset of human thyroid tumor-derived cell lines. Intriguingly, Rap1GAP was downregulated selectively in tumor cell lines that had acquired a mesenchymal morphology. Restoring Rap1GAP expression to these cells inhibited cell migration and invasion, effects that were correlated with the inhibition of Rap1 and Rac1 activity. The reexpression of Rap1GAP also inhibited DNA synthesis and anchorage-independent proliferation. Conversely, eliminating Rap1GAP expression in rat thyroid cells induced a transient increase in cell number. Strikingly, Rap1GAP expression was abolished by Ras transformation. The downregulation of Rap1GAP by Ras required the activation of the Raf/MEK/extracellular signal-regulated kinase cascade and was correlated with the induction of mesenchymal morphology and migratory behavior. Remarkably, the acute expression of oncogenic Ras was sufficient to downregulate Rap1GAP expression in rat thyroid cells, identifying Rap1GAP as a novel target of oncogenic Ras. Collectively, these data implicate Rap1GAP as a putative tumor/invasion suppressor in the thyroid. In support of that notion, Rap1GAP was highly expressed in normal human thyroid cells and downregulated in primary thyroid tumors
Combining Metabolomics and Transcriptomics to Characterize Tanshinone Biosynthesis in Salvia Miltiorrhiza
Plant natural products have been co-opted for millennia by humans for various uses such as flavor, fragrances, and medicines. These compounds often are only produced in relatively low amounts and are difficult to chemically synthesize, limiting access. While elucidation of the underlying biosynthetic processes might help alleviate these issues (e.g., via metabolic engineering), investigation of this is hindered by the low levels of relevant gene expression and expansion of the corresponding enzymatic gene families. However, the often-inducible nature of such metabolic processes enables selection of those genes whose expression pattern indicates a role in production of the targeted natural product. Here, we combine metabolomics and transcriptomics to investigate the inducible biosynthesis of the bioactive diterpenoid tanshinones from the Chinese medicinal herb, Salvia miltiorrhiza(Danshen). Untargeted metabolomics investigation of elicited hairy root cultures indicated that tanshinone production was a dominant component of the metabolic response, increasing at later time points. A transcriptomic approach was applied to not only define a comprehensive transcriptome (comprised of 20,972 non-redundant genes), but also its response to induction, revealing 6,358 genes that exhibited differential expression, with significant enrichment for up-regulation of genes involved in stress, stimulus and immune response processes. Consistent with our metabolomics analysis, there appears to be a slower but more sustained increased in transcript levels of known genes from diterpenoid and, more specifically, tanshinone biosynthesis. Among the co-regulated genes were 70 transcription factors and 8 cytochromes P450, providing targets for future investigation. Our results indicate a biphasic response of Danshen terpenoid metabolism to elicitation, with early induction of sesqui- and tri- terpenoid biosynthesis, followed by later and more sustained production of the diterpenoid tanshinones. Our data provides a firm foundation for further elucidation of tanshinone and other inducible natural product metabolism in Danshen
Inferring random change point from left-censored longitudinal data by segmented mechanistic nonlinear models, with application in HIV surveillance study
The primary goal of public health efforts to control HIV epidemics is to
diagnose and treat people with HIV infection as soon as possible after
seroconversion. The timing of initiation of antiretroviral therapy (ART)
treatment after HIV diagnosis is, therefore, a critical population-level
indicator that can be used to measure the effectiveness of public health
programs and policies at local and national levels. However, population-based
data on ART initiation are unavailable because ART initiation and prescription
are typically measured indirectly by public health departments (e.g., with
viral suppression as a proxy). In this paper, we present a random change-point
model to infer the time of ART initiation utilizing routinely reported
individual-level HIV viral load from an HIV surveillance system. To deal with
the left-censoring and the nonlinear trajectory of viral load data, we
formulate a flexible segmented nonlinear mixed effects model and propose a
Stochastic version of EM (StEM) algorithm, coupled with a Gibbs sampler for the
inference. We apply the method to a random subset of HIV surveillance data to
infer the timing of ART initiation since diagnosis and to gain additional
insights into the viral load dynamics. Simulation studies are also performed to
evaluate the properties of the proposed method
State Control and the Effects of Foreign Relations on Bilateral Trade
Do states use trade to reward and punish partners? WTO rules and the pressures of globalization restrict states’ capacity to manipulate trade policies, but we argue that governments can link political goals with economic outcomes using less direct avenues of influence over firm behavior. Where governments intervene in markets, politicization of trade is likely to occur. In this paper, we examine one important form of government control: state ownership of firms. Taking China and India as examples, we use bilateral trade data by firm ownership type, as well as measures of bilateral political relations based on diplomatic events and UN voting to estimate the effect of political relations on import and export flows. Our results support the hypothesis that imports controlled by state-owned enterprises (SOEs) exhibit stronger responsiveness to political relations than imports controlled by private enterprises. A more nuanced picture emerges for exports; while India’s exports through SOEs are more responsive to political tensions than its flows through private entities, the opposite is true for China. This research holds broader implications for how we should think about the relationship
between political and economic relations going forward, especially as a number of countries with partially state-controlled economies gain strength in the global economy
The discovery of I-BRD9, a selective cell active chemical probe for bromodomain containing protein 9 inhibition
Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain “reader” modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition
- …
