21 research outputs found
Nonlinear magneto-optical resonances for systems with J~100 observed in K2 molecules
We present the results of an experimental as well as theoretical study of
nonlinear magneto-optical resonances in diatomic potassium molecules in the
electronic ground state with large values of the angular momentum quantum
number J~100. At zero magnetic field, the absorption transitions are suppressed
because of population trapping in the ground state due to Zeeman coherences
between magnetic sublevels of this state along with depopulation pumping. The
destruction of such coherences in an external magnetic field was used to study
the resonances in this work. K2 molecules were formed in a glass cell filled
with potassium metal at a temperature above 150C. The cell was placed in an
oven and was located in a homogeneous magnetic field B, which was scanned from
zero to 0.7 T. Q-type and R-type transitions were excited with a tunable,
single-mode diode laser with central wavelength of 660 nm. Well pronounced
nonlinear Hanle effect signals were observed in the intensities of the linearly
polarized components of the laser-induced fluorescence (LIF) detected in the
direction parallel to the (B)-field with polarization vectors parallel (I_par)
and perpendicular (I_per) to the polarization vector of the exciting laser
radiation, which was orthogonal to (B). The intensities of the LIF components
were detected for different experimental parameters, such as laser power
density and vapor temperature, in order to compare them with numerical
simulations that were based on the optical Bloch equations for the density
matrix. We report good agreement of our measurements with numerical
simulations. Narrow, subnatural line width dark resonances in I_per(B) were
detected and explained
Detailed studies of non-linear magneto-optical resonances at D1 excitation of Rb-85 and Rb-87 for partially resolved hyperfine F-levels
Experimental signals of non-linear magneto-optical resonances at D1
excitation of natural rubidium in a vapor cell have been obtained and described
with experimental accuracy by a detailed theoretical model based on the optical
Bloch equations. The D1 transition of rubidium is a challenging system to
analyze theoretically because it contains transitions that are only partially
resolved under Doppler broadening. The theoretical model took into account all
nearby transitions, the coherence properties of the exciting laser radiation,
and the mixing of magnetic sublevels in an external magnetic field and also
included averaging over the Doppler profile. Great care was taken to obtain
accurate experimental signals and avoid systematic errors. The experimental
signals were reproduced very well at each hyperfine transition and over a wide
range of laser power densities, beam diameters, and laser detunings from the
exact transition frequency. The bright resonance expected at the F_g=1 -->
F_e=2 transition of Rb-87 has been observed. A bright resonance was observed at
the F_g=2 --> F_e=3 transition of Rb-85, but displaced from the exact position
of the transition due to the influence of the nearby F_g=2 --> F_e=2
transition, which is a dark resonance whose contrast is almost two orders of
magnitude larger than the contrast of the bright resonance at the F_g=2 -->
F_e=3 transition. Even in this very delicate situation, the theoretical model
described in detail the experimental signals at different laser detunings.Comment: 11 pages, 9 figure
Nonlinear magneto-optical resonances at D1 excitation of 85Rb and 87Rb in an extremely thin cell
Nonlinear magneto-optical resonances have been measured in an extremely thin
cell (ETC) for the D1 transition of rubidium in an atomic vapor of natural
isotopic composition. All hyperfine transitions of both isotopes have been
studied for a wide range of laser power densities, laser detunings, and ETC
wall separations. Dark resonances in the laser induced fluorescence (LIF) were
observed as expected when the ground state total angular momentum F_g was
greater than or equal to the excited state total angular momentum F_e. Unlike
the case of ordinary cells, the width and contrast of dark resonances formed in
the ETC dramatically depended on the detuning of the laser from the exact
atomic transition. A theoretical model based on the optical Bloch equations was
applied to calculate the shapes of the resonance curves. The model averaged
over the contributions from different atomic velocity groups, considered all
neighboring hyperfine transitions, took into account the splitting and mixing
of magnetic sublevels in an external magnetic field, and included a detailed
treatment of the coherence properties of the laser radiation. Such a
theoretical approach had successfully described nonlinear magneto-optical
resonances in ordinary vapor cells. Although the values of certain model
parameters in the ETC differed significantly from the case of ordinary cells,
the same physical processes were used to model both cases. However, to describe
the resonances in the ETC, key parameters such as the transit relaxation rate
and Doppler width had to be modified in accordance with the ETC's unique
features. Agreement between the measured and calculated resonance curves was
satisfactory for the ETC, though not as good as in the case of ordinary cells.Comment: v2: substantial changes and expanded theoretical model; 13 pages, 10
figures; accepted for publication in Physical Review
Conversion of bright magneto-optical resonances into dark at fixed laser frequency for D2 excitation of atomic rubidium
Nonlinear magneto-optical resonances on the hyperfine transitions belonging
to the D2 line of rubidium were changed from bright to dark resonances by
changing the laser power density of the single exciting laser field or by
changing the vapor temperature in the cell. In one set of experiments atoms
were excited by linearly polarized light from an extended cavity diode laser
with polarization vector perpendicular to the light's propagation direction and
magnetic field, and laser induced fluorescence (LIF) was observed along the
direction of the magnetic field, which was scanned. A low-contrast bright
resonance was observed at low laser power densities when the laser was tuned to
the Fg=2 --> Fe=3 transition of Rb-87 and near to the Fg=3 --> Fe=4 transition
of Rb-85. The bright resonance became dark as the laser power density was
increased above 0.6mW/cm2 or 0.8 mW/cm2, respectively. When the Fg=2 --> Fe=3
transition of Rb-87 was excited with circularly polarized light in a second set
of experiments, a bright resonance was observed, which became dark when the
temperature was increased to around 50C. The experimental observations at room
temperature could be reproduced with good agreement by calculations based on a
theoretical model, although the theoretical model was not able to describe
measurements at elevated temperatures, where reabsorption was thought to play a
decisive role. The model was derived from the optical Bloch equations and
included all nearby hyperfine components, averaging over the Doppler profile,
mixing of magnetic sublevels in the external magnetic field, and a treatment of
the coherence properties of the exciting radiation field.Comment: 9 pages, 7 figure
Cascade coherence transfer and magneto-optical resonances at 455 nm excitation of Cesium
We present and experimental and theoretical study of nonlinear
magneto-optical resonances observed in the fluorescence to the ground state
from the 7P_{3/2} state of cesium, which was populated directly by laser
radiation at 455 nm, and from the 6P_{1/2} and 6P_{3/2} states, which were
populated via cascade transitions that started from the 7P_{3/2} state and
passed through various intermediate states. The laser-induced fluorescence
(LIF) was observed as the magnetic field was scanned through zero. Signals were
recorded for the two orthogonal, linearly polarized components of the LIF. We
compared the measured signals with the results of calculations from a model
that was based on the optical Bloch equations and averaged over the Doppler
profile. This model was adapted from a model that had been developed for D_1
and D_2 excitation of alkali metal atoms. The calculations agree quite well
with the measurements, especially when taking into account the fact that some
experimental parameters were only estimated in the model.Comment: small changes to text of previous version; 12 pages, 8 figure
Spectrally-resolved UV photodesorption of CH4 in pure and layered ices
Context. Methane is among the main components of the ice mantles of
insterstellar dust grains, where it is at the start of a rich solid-phase
chemical network. Quantification of the photon-induced desorption yield of
these frozen molecules and understanding of the underlying processes is
necessary to accurately model the observations and the chemical evolution of
various regions of the interstellar medium. Aims. This study aims at
experimentally determining absolute photodesorption yields for the CH4 molecule
as a function of photon energy. The influence of the ice composition is also
investigated. By studying the methane desorption from layered CH4:CO ice,
indirect desorption processes triggered by the excitation of the CO molecules
is monitored and quantified. Methods. Tunable monochromatic VUV light from the
DESIRS beamline of the SOLEIL synchrotron is used in the 7 - 13.6 eV (177 - 91
nm) range to irradiate pure CH4 or layers of CH4 deposited on top of CO ice
samples. The release of species in the gas phase is monitored by quadrupole
mass spectrometry and absolute photodesorption yields of intact CH4 are
deduced. Results. CH4 photodesorbs for photon energies higher than ~9.1 eV
(~136 nm). The photodesorption spectrum follows the absorption spectrum of CH4,
which confirms a desorption mechanism mediated by electronic transitions in the
ice. When it is deposited on top of CO, CH4 desorbs between 8 and 9 eV with a
pattern characteristic of CO absorption, indicating desorption induced by
energy transfer from CO molecules. Conclusions. The photodesorption of CH4 from
the pure ice in various interstellar environments is around 2.0 x 10^-3
molecules per incident photon. Results on CO-induced indirect desorption of CH4
provide useful insights for the generalization of this process to other
molecules co-existing with CO in ice mantles
Recent Advances in Tracer‐Aided Mixing Modeling of Water in the Critical Zone
Plain Language Summary: The Critical Zone is a dynamic interface where air, water, soil, plants, and rocks interact. Ensuring sustainable water resources and healthy ecosystems requires understanding how water moves within the Critical Zone and how this may change in the future. To model water partitioning within the Critical Zone, researchers often use tracer‐aided mixing models that allow us to track the movement of water using naturally occurring markers or “tracers.” This approach quantifies the sources and flowpaths of water in the water cycle, from raindrops to aquifers deep below the ground. In this Review, we summarize the latest advancements in tracer‐aided mixing models and how they help us to gain a clearer and more precise understanding of water pathways in the Critical Zone. In addition, we propose future research directions in this evolving field
Twenty-three unsolved problems in hydrology (UPH) – a community perspective
This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through online media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focused on the process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come.publishedVersio
Saturation Effects of Dark Magneto-Optical Resonances Observed on the Alkali D1 Line
Saturation Effects of Dark Magneto-Optical Resonances Observed on the AlkaliD1LineTheoretical studies of saturation effects of dark magneto-optical resonances are presented. A model based on the optical Bloch equations is applied to simulate numerically the alkaliD1excitation in external magnetic field. The laser power densities at which the expected dark resonance contrast reaches maximum are analyzed and correlated with the quantum superposition states induced by exciting laser field. Fictional hyperfine structure constants for the excited state are used to vary the selection efficiency of hyperfine transitions.</jats:p
