1,366 research outputs found

    High-quality GeV-scale electron bunches with the Resonant Multi-Pulse Ionization Injection

    Full text link
    Recently a new injection scheme for Laser Wake Field Acceleration, employing a single 100-TW-class laser system, has been proposed. In the Resonant Multi-Pulse Ionization injection (ReMPI) a resonant train of pulses drives a large amplitude plasma wave that traps electrons extracted from the plasma by further ionization of a high-Z dopant (Argon in the present paper). While the pulses of the driver train have intensity below the threshold for the dopant's ionization, the properly delayed and frequency doubled (or more) ionization pulse possesses an electric field large enough to extract electrons, though its normalized amplitude is well below unity. In this paper we will report on numerical simulations results aimed at the generation of GeV-scale bunches with normalized emittance and {\it rms} energy below 80nm×rad80\, nm \times rad and 0.5%0.5\, \%, respectively. Analytical consideration of the FEL performance for a 1.3GeV1.3\, GeV bunch will be also reported.Comment: EAAC 2017 Conference, Elba, Ital

    Light Ion Accelerating Line (L3IA): Test Experiment at ILIL-PW

    Full text link
    The construction of a novel Laser driven Light Ions Acceleration Line(L3IA) is progressing rapidly towards the operation, following the recent upgrade of the ILIL-PW laser facility. The Line was designed following the pilot experimental activity carried out earlier at the same facility to define design parameters and to identify main components including target control and diagnostic equipment, also in combination with the numerical simulations for the optimization of laser and target parameters. A preliminary set of data was acquired following the successful commissioning of the laser system >100 TW upgrade. Data include output from a range of different ion detectors and optical diagnostics installed for qualification of the laser-target interaction. An overview of the results is given along with a description of the relevant upgraded laser facility and features.Comment: 6 pages, 7 figures, 18 references, presented at the EAAC 201

    Acceleration with Self-Injection for an All-Optical Radiation Source at LNF

    Full text link
    We discuss a new compact gamma-ray source aiming at high spectral density, up to two orders of magnitude higher than currently available bremsstrahlung sources, and conceptually similar to Compton Sources based on conventional linear accelerators. This new source exploits electron bunches from laser-driven electron acceleration in the so-called self-injection scheme and uses a counter-propagating laser pulse to obtain X and gamma-ray emission via Thomson/Compton scattering. The proposed experimental configuration inherently provides a unique test-bed for studies of fundamental open issues of electrodynamics. In view of this, a preliminary discussion of recent results on self-injection with the FLAME laser is also given.Comment: 8 pages, 10 figures, 44 references - Channeling 2012 conferenc

    Evidence of resonant surface wave excitation in the relativistic regime through measurements of proton acceleration from grating targets

    Get PDF
    The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, has been experimentally investigated. Ultrahigh contrast (1012\sim 10^{12}) pulses allowed to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultra-high intensity >10^{19} \mbox{W/cm}^{2}. A maximum increase by a factor of 2.5 of the cut-off energy of protons produced by Target Normal Sheath Acceleration has been observed with respect to plane targets, around the incidence angle expected for resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.Comment: 5 pages, 5 figures, 2nd version implements final correction

    A laser-driven electron accelerator for radiobiology experiments

    Get PDF
    A novel concept laser-driven electron accelerator is described, whose operation regime and setup was optimized for radiobiology experiments. A brief account is given first of the motivations of our work, aimed at allowing irradiation campaigns of in vitro biological samples; the ultimate goal is to check the biological effectiveness of laser-driven electron beams against conventionally accelerated ones. A description of the electron source is then given; finally, the main results of the activity aimed at characterizing the source from a dosimetric point of view are presented

    Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes

    Full text link
    Self-consistent transport simulation of ITER scenarios is a very important tool for the exploration of the operational space and for scenario optimisation. It also provides an assessment of the compatibility of developed scenarios (which include fast transient events) with machine constraints, in particular with the poloidal field (PF) coil system, heating and current drive (H&CD), fuelling and particle and energy exhaust systems. This paper discusses results of predictive modelling of all reference ITER scenarios and variants using two suite of linked transport and equilibrium codes. The first suite consisting of the 1.5D core/2D SOL code JINTRAC [1] and the free boundary equilibrium evolution code CREATE-NL [2,3], was mainly used to simulate the inductive D-T reference Scenario-2 with fusion gain Q=10 and its variants in H, D and He (including ITER scenarios with reduced current and toroidal field). The second suite of codes was used mainly for the modelling of hybrid and steady state ITER scenarios. It combines the 1.5D core transport code CRONOS [4] and the free boundary equilibrium evolution code DINA-CH [5].Comment: 23 pages, 18 figure
    corecore