816 research outputs found
On classical string configurations
Equations which define classical configurations of strings in are
presented in a simple form. General properties as well as particular classes of
solutions of these equations are considered.Comment: 10 pages, Latex, no figures, trivial corrections, submitted to Modern
Physics Letters
A Physical Limit to the Magnetic Fields of T Tauri Stars
Recent estimates of magnetic field strengths in T Tauri stars yield values
--. In this paper, I present an upper limit to the
photospheric values of by computing the equipartition values for different
surface gravities and effective temperatures. The values of derived from
the observations exceed this limit, and I examine the possible causes for this
discrepancy
Milne-Eddington inversion of the Fe I line pair at 630~nm
The iron lines at 630.15 and 630.25 nm are often used to determine the
physical conditions of the solar photosphere. A common approach is to invert
them simultaneously under the Milne-Eddington approximation. The same
thermodynamic parameters are employed for the two lines, except for their
opacities, which are assumed to have a constant ratio. We aim at investigating
the validity of this assumption, since the two lines are not exactly the same.
We use magnetohydrodynamic simulations of the quiet Sun to examine the behavior
of the ME thermodynamic parameters and their influence on the retrieval of
vector magnetic fields and flow velocities. Our analysis shows that the two
lines can be coupled and inverted simultaneously using the same thermodynamic
parameters and a constant opacity ratio. The inversion of two lines is
significantly more accurate than single-line inversions because of the larger
number of observables.Comment: Accepted for publication in Astronomy and Astrophysics (Research
Note
Estimation of Success in Collaborative Learning Based on Multimodal Learning Analytics Features
Multimodal learning analytics provides researchers new tools and techniques to capture different types of data from complex learning activities in dynamic learning environments. This paper investigates high-fidelity synchronised multimodal recordings of small groups of learners interacting from diverse sensors that include computer vision, user generated content, and data from the learning objects (like physical computing components or laboratory equipment). We processed and extracted different aspects of the students' interactions to answer the following question: which features of student group work are good predictors of team success in open-ended tasks with physical computing? The answer to the question provides ways to automatically identify the students' performance during the learning activities
Extended thromboprophylaxis with betrixaban in acutely ill medical patients
BACKGROUND:
Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown.
METHODS:
Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding.
RESULTS:
A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55).
CONCLUSIONS:
Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218.)
Novel approach to the study of quantum effects in the early universe
We develop a theoretical frame for the study of classical and quantum
gravitational waves based on the properties of a nonlinear ordinary
differential equation for a function of the conformal time
, called the auxiliary field equation. At the classical level,
can be expressed by means of two independent solutions of the
''master equation'' to which the perturbed Einstein equations for the
gravitational waves can be reduced. At the quantum level, all the significant
physical quantities can be formulated using Bogolubov transformations and the
operator quadratic Hamiltonian corresponding to the classical version of a
damped parametrically excited oscillator where the varying mass is replaced by
the square cosmological scale factor . A quantum approach to the
generation of gravitational waves is proposed on the grounds of the previous
dependent Hamiltonian. An estimate in terms of and
of the destruction of quantum coherence due to the gravitational
evolution and an exact expression for the phase of a gravitational wave
corresponding to any value of are also obtained. We conclude by
discussing a few applications to quasi-de Sitter and standard de Sitter
scenarios.Comment: 20 pages, to appear on PRD. Already published background material has
been either settled up in a more compact form or eliminate
Two-dimensional solar spectropolarimetry with the KIS/IAA Visible Imaging Polarimeter
Spectropolarimetry at high spatial and spectral resolution is a basic tool to
characterize the magnetic properties of the solar atmosphere. We introduce the
KIS/IAA Visible Imaging Polarimeter (VIP), a new post-focus instrument that
upgrades the TESOS spectrometer at the German VTT into a full vector
polarimeter. VIP is a collaboration between the KIS and the IAA. We describe
the optical setup of VIP, the data acquisition procedure, and the calibration
of the spectropolarimetric measurements. We show examples of data taken between
2005 and 2008 to illustrate the potential of the instrument. VIP is capable of
measuring the four Stokes profiles of spectral lines in the range from 420 to
700 nm with a spatial resolution better than 0.5". Lines can be sampled at 40
wavelength positions in 60 s, achieving a noise level of about 2 x 10E-3 with
exposure times of 300 ms and pixel sizes of 0.17" x 0.17" (2 x 2 binning). The
polarization modulation is stable over periods of a few days, ensuring high
polarimetric accuracy. The excellent spectral resolution of TESOS allows the
use of sophisticated data analysis techniques such as Stokes inversions. One of
the first scientific results of VIP presented here is that the ribbon-like
magnetic structures of the network are associated with a distinct pattern of
net circular polarization away from disk center. VIP performs
spectropolarimetric measurements of solar magnetic fields at a spatial
resolution that is only slightly worse than that of the Hinode
spectropolarimeter, while providing a 2D field field of view and the
possibility to observe up to four spectral regions sequentially with high
cadence. VIP can be used as a stand-alone instrument or in combination with
other spectropolarimeters and imaging systems of the VTT for extended
wavelength coverage.Comment: 10 pages, 8 figures, accepted by Astronomy and Astrophysics v2:
figures updated with improved qualit
Analytical maximum likelihood estimation of stellar magnetic fields
The polarised spectrum of stellar radiation encodes valuable information on
the conditions of stellar atmospheres and the magnetic fields that permeate
them. In this paper, we give explicit expressions to estimate the magnetic
field vector and its associated error from the observed Stokes parameters. We
study the solar case where specific intensities are observed and then the
stellar case, where we receive the polarised flux. In this second case, we
concentrate on the explicit expression for the case of a slow rotator with a
dipolar magnetic field geometry. Moreover, we also give explicit formulae to
retrieve the magnetic field vector from the LSD profiles without assuming mean
values for the LSD artificial spectral line. The formulae have been obtained
assuming that the spectral lines can be described in the weak field regime and
using a maximum likelihood approach. The errors are recovered by means of the
hermitian matrix. The bias of the estimators are analysed in depth.Comment: accepted for publication in MNRA
- …
