1,636 research outputs found
Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond
The temperature dependence of the magnetic resonance spectra of
nitrogen-vacancy (NV-) ensembles in the range of 280-330 K was studied. Four
samples prepared under different conditions were studied with NV-
concentrations ranging from 10 ppb to 15 ppm. For all of these samples, the
axial zero-field splitting (ZFS) parameter, D, was found to vary significantly
with temperature, T, as dD/dT = -74.2(7) kHz/K. The transverse ZFS parameter,
E, was non-zero (between 4 and 11 MHz) in all samples, and exhibited a
temperature dependence of dE/(EdT) = -1.4(3) x 10^(-4) K^(-1). The results
might be accounted for by considering local thermal expansion. The observation
of the temperature dependence of the ZFS parameters presents a significant
challenge for room-temperature diamond magnetometers and may ultimately limit
their bandwidth and sensitivity.Comment: 5 pages, 2 figures, 1 tabl
Spike-timing computation properties of a feed-forward neural network model
Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g. serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS) in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses
Effects of seawater and deionized water at 0 to 80 deg C on the flexural properties of a glass/epoxy composite
The effect on the flexural properties of a glass/epoxy composite of immersion in deionized water or seawater at 0, 25, and 80 C for 451 hr was examined. The percent weight gain at 0 and 25 C was low (0.06 to 0.17 percent) and there was no significant change in the flexural properties for these environmental conditions. At 80 C there was a decrease in the flexural strength of 17 and 20 percent in seawater and deionized water, respectively. This is a comparison to control samples exposed to 80 C heat alone. These decreases were found to be nearly reversible once the samples were dried. Optical microscopy did not reveal cracking of the matrix. The flexural modulus was essentially unaffected by exposure to deionized water and seawater at 80 C
Evidence That the P\u3csub\u3ei\u3c/sub\u3e Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle
Nitrogenase reduction of dinitrogen (N2) to ammonia (NH3) involves a sequence of events that occur upon the transient association of the reduced Fe protein containing two ATP molecules with the MoFe protein that includes electron transfer, ATP hydrolysis, Pi release, and dissociation of the oxidized, ADP-containing Fe protein from the reduced MoFe protein. Numerous kinetic studies using the nonphysiological electron donor dithionite have suggested that the rate-limiting step in this reaction cycle is the dissociation of the Fe protein from the MoFe protein. Here, we have established the rate constants for each of the key steps in the catalytic cycle using the physiological reductant flavodoxin protein in its hydroquinone state. The findings indicate that with this reductant, the rate-limiting step in the reaction cycle is not protein–protein dissociation or reduction of the oxidized Fe protein, but rather events associated with the Pi release step. Further, it is demonstrated that (i) Fe protein transfers only one electron to MoFe protein in each Fe protein cycle coupled with hydrolysis of two ATP molecules, (ii) the oxidized Fe protein is not reduced when bound to MoFe protein, and (iii) the Fe protein interacts with flavodoxin using the same binding interface that is used with the MoFe protein. These findings allow a revision of the rate-limiting step in the nitrogenase Fe protein cycle
Production and detection of atomic hexadecapole at Earth's magnetic field
Anisotropy of atomic states is characterized by population differences and
coherences between Zeeman sublevels. It can be efficiently created and probed
via resonant interactions with light, the technique which is at the heart of
modern atomic clocks and magnetometers. Recently, nonlinear magneto-optical
techniques have been developed for selective production and detection of higher
polarization moments, hexadecapole and hexacontatetrapole, in the ground states
of the alkali atoms. Extension of these techniques into the range of
geomagnetic fields is important for practical applications. This is because
hexadecapole polarization corresponding to the Zeeman coherence,
with maximum possible for electronic angular momentum and
nuclear spin , is insensitive to the nonlinear Zeeman effect (NLZ). This
is of particular interest because NLZ normally leads to resonance splitting and
systematic errors in atomic magnetometers. However, optical signals due to the
hexadecapole moment decline sharply as a function of magnetic field. We report
a novel method that allows selective creation of a macroscopic long-lived
ground-state hexadecapole polarization. The immunity of the hexadecapole signal
to NLZ is demonstrated with F=2 Rb atoms at Earth's field.Comment: 4 pages, 5 figure
Engaging stakeholders in research to address water-energy-food (WEF) nexus challenges
The water–energy–food (WEF) nexus has become a popular, and potentially powerful, frame through which to analyse interactions and interdependencies between these three systems. Though the case for transdisciplinary research in this space has been made, the extent of stakeholder engagement in research remains limited with stakeholders most commonly incorporated in research as end-users. Yet, stakeholders interact with nexus issues in a variety of ways, consequently there is much that collaboration might offer to develop nexus research and enhance its application. This paper outlines four aspects of nexus research and considers the value and potential challenges for transdisciplinary research in each. We focus on assessing and visualising nexus systems; understanding governance and capacity building; the importance of scale; and the implications of future change. The paper then proceeds to describe a novel mixed-method study that deeply integrates stakeholder knowledge with insights from multiple disciplines. We argue that mixed-method research designs—in this case orientated around a number of cases studies—are best suited to understanding and addressing real-world nexus challenges, with their inevitable complex, non-linear system characteristics. Moreover, integrating multiple forms of knowledge in the manner described in this paper enables research to assess the potential for, and processes of, scaling-up innovations in the nexus space, to contribute insights to policy and decision making
- …
