5,201 research outputs found
The role of modeling in troubleshooting: an example from electronics
Troubleshooting systems is integral to experimental physics in both research
and instructional laboratory settings. The recently adopted AAPT Lab Guidelines
identify troubleshooting as an important learning outcome of the undergraduate
laboratory curriculum. We investigate students' model-based reasoning on a
troubleshooting task using data collected in think-aloud interviews during
which pairs of students attempted to diagnose and repair a malfunctioning
circuit. Our analysis scheme is informed by the Experimental Modeling
Framework, which describes physicists' use of mathematical and conceptual
models when reasoning about experimental systems. We show that this framework
is a useful lens through which to characterize the troubleshooting process.Comment: 4 pages, 2 figures; Submitted to 2015 PERC Proceeding
A project of universal computing platform - cluster of floating point DSP processors (Projekt uniwersalnej platformy obliczeniowej - klastra zmiennoprzecinkowych procesorów DSP)
In this paper, a project of DSP processors cluster is presented. This project is realized as an extension board for PC computers. A block diagram of the board is described. A DSP processor properties for cluster computation was described. The aim is to use a number of such boards for building a cluster of DSP clusters. Such architecture will be used for High Energy Physics Experiments results calculations with such data as CMS, ILC and E-XFEL
Volume and Quantizations
The aim of this letter is to indicate the differences between the
Rovelli-Smolin quantum volume operator and other quantum volume operators
existing in the literature. The formulas for the operators are written in a
unifying notation of the graph projective framework. It is clarified whose
results apply to which operators and why.Comment: 8 page
The Wilsonian Renormalization Group in Randall-Sundrum 1
We find renormalization group transformations for the compactified
Randall-Sundrum scenario by integrating out an infinitesimal slice of
ultraviolet degrees of freedom near the Planck brane. Under these
transformations the coefficients of operators on the Planck brane experience RG
evolution. The extra-dimensional radius also scales, flowing to zero in the IR.
We find an attractive fixed point in the context of a bulk scalar field theory.
Calculations are simplified in the low energy effective theory as we
demonstrate with the computation of a loop diagram.Comment: 19 pages, typos adde
Background independent quantizations: the scalar field I
We are concerned with the issue of quantization of a scalar field in a
diffeomorphism invariant manner. We apply the method used in Loop Quantum
Gravity. It relies on the specific choice of scalar field variables referred to
as the polymer variables. The quantization, in our formulation, amounts to
introducing the `quantum' polymer *-star algebra and looking for positive
linear functionals, called states. The assumed in our paper homeomorphism
invariance allows to determine a complete class of the states. Except one, all
of them are new. In this letter we outline the main steps and conclusions, and
present the results: the GNS representations, characterization of those states
which lead to essentially self adjoint momentum operators (unbounded),
identification of the equivalence classes of the representations as well as of
the irreducible ones. The algebra and topology of the problem, the derivation,
all the technical details and more are contained in the paper-part II.Comment: 13 pages, minor corrections were made in the revised versio
From Crystalline to Amorphous Germania Bilayer Films at the Atomic Scale: Preparation and Characterization
A new two-dimensional (2D) germanium dioxide film has been prepared. The film consists of interconnected germania tetrahedral units forming a bilayer structure, weakly coupled to the supporting Pt(111) metal-substrate. Density functional theory calculations predict a stable structure of 558-membered rings for germania films, while for silica films 6-membered rings are preferred. By varying the preparation conditions the degree of order in the germania films is tuned. Crystalline, intermediate ordered and purely amorphous film structures are resolved by analysing scanning tunnelling microscopy images
The EPRL intertwiners and corrected partition function
Do the SU(2) intertwiners parametrize the space of the EPRL solutions to the
simplicity constraint? What is a complete form of the partition function
written in terms of this parametrization? We prove that the EPRL map is
injective for n-valent vertex in case when it is a map from SO(3) into
SO(3)xSO(3) representations. We find, however, that the EPRL map is not
isometric. In the consequence, in order to be written in a SU(2) amplitude
form, the formula for the partition function has to be rederived. We do it and
obtain a new, complete formula for the partition function. The result goes
beyond the SU(2) spin-foam models framework.Comment: RevTex4, 15 pages, 5 figures; theorem of injectivity of EPRL map
correcte
Investigating the role of model-based reasoning while troubleshooting an electric circuit
We explore the overlap of two nationally-recognized learning outcomes for
physics lab courses, namely, the ability to model experimental systems and the
ability to troubleshoot a malfunctioning apparatus. Modeling and
troubleshooting are both nonlinear, recursive processes that involve using
models to inform revisions to an apparatus. To probe the overlap of modeling
and troubleshooting, we collected audiovisual data from think-aloud activities
in which eight pairs of students from two institutions attempted to diagnose
and repair a malfunctioning electrical circuit. We characterize the cognitive
tasks and model-based reasoning that students employed during this activity. In
doing so, we demonstrate that troubleshooting engages students in the core
scientific practice of modeling.Comment: 20 pages, 6 figures, 4 tables; Submitted to Physical Review PE
Strain localization in a shear transformation zone model for amorphous solids
We model a sheared disordered solid using the theory of Shear Transformation
Zones (STZs). In this mean-field continuum model the density of zones is
governed by an effective temperature that approaches a steady state value as
energy is dissipated. We compare the STZ model to simulations by Shi, et
al.(Phys. Rev. Lett. 98 185505 2007), finding that the model generates
solutions that fit the data,exhibit strain localization, and capture important
features of the localization process. We show that perturbations to the
effective temperature grow due to an instability in the transient dynamics, but
unstable systems do not always develop shear bands. Nonlinear energy
dissipation processes interact with perturbation growth to determine whether a
material exhibits strain localization. By estimating the effects of these
interactions, we derive a criterion that determines which materials exhibit
shear bands based on the initial conditions alone. We also show that the shear
band width is not set by an inherent diffusion length scale but instead by a
dynamical scale that depends on the imposed strain rate.Comment: 8 figures, references added, typos correcte
- …
