6,107 research outputs found

    Precise toppling balance, quenched disorder, and universality for sandpiles

    Full text link
    A single sandpile model with quenched random toppling matrices captures the crucial features of different models of self-organized criticality. With symmetric matrices avalanche statistics falls in the multiscaling BTW universality class. In the asymmetric case the simple scaling of the Manna model is observed. The presence or absence of a precise toppling balance between the amount of sand released by a toppling site and the total quantity the same site receives when all its neighbors topple once determines the appropriate universality class.Comment: 5 Revtex pages, 4 figure

    Studio sulla diffusione di Leishmania infantum in mammiferi dome- stici e selvatici come indicatori di infezione in aree endemiche di Calabria e Campania

    Get PDF
    Studio mediante la Real time PCR della presenza di Leishmania infantum in piccoli roditori ed altri piccoli mammiferi con differenti abitudini di vita e distribuzione sul territorio della Calabria e Campani

    Sandpile model on an optimized scale-free network on Euclidean space

    Full text link
    Deterministic sandpile models are studied on a cost optimized Barab\'asi-Albert (BA) scale-free network whose nodes are the sites of a square lattice. For the optimized BA network, the sandpile model has the same critical behaviour as the BTW sandpile, whereas for the un-optimized BA network the critical behaviour is mean-field like.Comment: Five pages, four figure

    Critical States in a Dissipative Sandpile Model

    Full text link
    A directed dissipative sandpile model is studied in the two-dimension. Numerical results indicate that the long time steady states of this model are critical when grains are dropped only at the top or, everywhere. The critical behaviour is mean-field like. We discuss the role of infinite avalanches of dissipative models in periodic systems in determining the critical behaviour of same models in open systems.Comment: 4 pages (Revtex), 5 ps figures (included

    Order Parameter and Scaling Fields in Self-Organized Criticality

    Full text link
    We present a unified dynamical mean-field theory for stochastic self-organized critical models. We use a single site approximation and we include the details of different models by using effective parameters and constraints. We identify the order parameter and the relevant scaling fields in order to describe the critical behavior in terms of usual concepts of non equilibrium lattice models with steady-states. We point out the inconsistencies of previous mean-field approaches, which lead to different predictions. Numerical simulations confirm the validity of our results beyond mean-field theory.Comment: 4 RevTex pages and 2 postscript figure

    Clustering properties of a generalised critical Euclidean network

    Full text link
    Many real-world networks exhibit scale-free feature, have a small diameter and a high clustering tendency. We have studied the properties of a growing network, which has all these features, in which an incoming node is connected to its iith predecessor of degree kik_i with a link of length \ell using a probability proportional to kiβαk^\beta_i \ell^{\alpha}. For α>0.5\alpha > -0.5, the network is scale free at β=1\beta = 1 with the degree distribution P(k)kγP(k) \propto k^{-\gamma} and γ=3.0\gamma = 3.0 as in the Barab\'asi-Albert model (α=0,β=1\alpha =0, \beta =1). We find a phase boundary in the αβ\alpha-\beta plane along which the network is scale-free. Interestingly, we find scale-free behaviour even for β>1\beta > 1 for α<0.5\alpha < -0.5 where the existence of a new universality class is indicated from the behaviour of the degree distribution and the clustering coefficients. The network has a small diameter in the entire scale-free region. The clustering coefficients emulate the behaviour of most real networks for increasing negative values of α\alpha on the phase boundary.Comment: 4 pages REVTEX, 4 figure
    corecore