1,128 research outputs found
Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?
In the age of Kepler and Corot, extended observations have provided estimates
of stellar pulsation frequencies that have achieved new levels of precision,
regularly exceeding fractional levels of a few parts in . These high
levels of precision now in principle exceed the point where one can ignore the
Doppler shift of pulsation frequencies caused by the motion of a star relative
to the observer. We present a correction for these Doppler shifts and use
previously published pulsation frequencies to demonstrate the significance of
the effect. We suggest that reported pulsation frequencies should be routinely
corrected for stellar line-of-sight velocity Doppler shifts, or if a
line-of-sight velocity estimate is not available, the frame of reference in
which the frequencies are reported should be clearly stated.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter
Galactic Archaeology with CoRoT and APOGEE: Creating mock observations from a chemodynamical model
In a companion paper, we have presented the combined
asteroseismic-spectroscopic dataset obtained from CoRoT lightcurves and APOGEE
infra-red spectra for 678 solar-like oscillating red giants in two fields of
the Galactic disc (CoRoGEE). We have measured chemical abundance patterns,
distances, and ages of these field stars which are spread over a large radial
range of the Milky Way's disc. Here we show how to simulate this dataset using
a chemodynamical Galaxy model. We also demonstrate how the observation
procedure influences the accuracy of our estimated ages.Comment: 5 pages, 6 figures. To appear in Astronomische Nachrichten, special
issue "Reconstruction the Milky Way's History: Spectroscopic surveys,
Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J.
Montalb\'an, and M. Steffe
Super-Nyquist asteroseismology of solar-like oscillators with Kepler and K2 - expanding the asteroseismic cohort at the base of the red-giant branch
We consider the prospects for detecting solar-like oscillations in the
"super-Nyquist" regime of long-cadence (LC) Kepler photometry, i.e., above the
associated Nyquist frequency of approximately 283 {\mu}Hz. Targets of interest
are cool, evolved subgiants and stars lying at the base of the red-giant
branch. These stars would ordinarily be studied using the short-cadence (SC)
data, since the associated SC Nyquist frequency lies well above the frequencies
of the detectable oscillations. However, the number of available SC target
slots is quite limited. This imposes a severe restriction on the size of the
ensemble available for SC asteroseismic study.We find that archival Kepler LC
data from the nominal Mission may be utilized for asteroseismic studies of
targets whose dominant oscillation frequencies lie as high as approximately 500
{\mu}Hz, i.e., about 1.75- times the LC Nyquist frequency. The frequency
detection threshold for the shorter-duration science campaigns of the
re-purposed Kepler Mission, K2, is lower. The maximum threshold will probably
lie somewhere between approximately 400 and 450 {\mu}Hz. The potential to
exploit the archival Kepler and K2 LC data in this manner opens the door to
increasing significantly the number of subgiant and low-luminosity red-giant
targets amenable to asteroseismic analysis, overcoming target limitations
imposed by the small number of SC slots.We estimate that around 400 such
targets are now available for study in the Kepler LC archive. That number could
potentially be a lot higher for K2, since there will be a new target list for
each of its campaigns.Comment: Accepted for publication in MNRAS; 11 pages, 7 figures; reference
list update
CoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data
We search for new variable B-type pulsators in the CoRoT data assembled
primarily for planet detection, as part of CoRoT's Additional Programme. We aim
to explore the properties of newly discovered B-type pulsators from the
uninterrupted CoRoT space-based photometry and to compare them with known
members of the Beta Cep and slowly pulsating B star (SPB) classes. We developed
automated data analysis tools that include algorithms for jump correction,
light-curve detrending, frequency detection, frequency combination search, and
for frequency and period spacing searches. Besides numerous new, classical,
slowly pulsating B stars, we find evidence for a new class of low-amplitude
B-type pulsators between the SPB and Delta Sct instability strips, with a very
broad range of frequencies and low amplitudes, as well as several slowly
pulsating B stars with residual excess power at frequencies typically a factor
three above their expected g-mode frequencies. The frequency data we obtained
for numerous new B-type pulsators represent an appropriate starting point for
further theoretical analyses of these stars, once their effective temperature,
gravity, rotation velocity, and abundances will be derived spectroscopically in
the framework of an ongoing FLAMES survey at the VLT.Comment: 22 pages, 30 figures, accepted for publication in A&
Galactic Archaeology with TESS: Prospects for Testing the Star Formation History in the Solar Neighbourhood
A period of quenching between the formation of the thick and thin disks of
the Milky Way has been recently proposed to explain the observed
age-[{\alpha}/Fe] distribution of stars in the solar neighbourhood. However,
robust constraints on stellar ages are currently available for only a limited
number of stars. The all-sky survey TESS (Transiting Exoplanet Survey
Satellite) will observe the brightest stars in the sky and thus can be used to
investigate the age distributions of stars in these components of the Galaxy
via asteroseismology, where previously this has been difficult using other
techniques. The aim of this preliminary study was to determine whether TESS
will be able to provide evidence for quenching periods during the star
formation history of the Milky Way. Using a population synthesis code, we
produced populations based on various stellar formation history models and
limited the analysis to red-giant-branch stars. We investigated the
mass-Galactic-disk-height distributions, where stellar mass was used as an age
proxy, to test for whether periods of quenching can be observed by TESS. We
found that even with the addition of 15% noise to the inferred masses, it will
be possible for TESS to find evidence for/against quenching periods suggested
in the literature (e.g. between 7 and 9 Gyr ago), therefore providing stringent
constraints on the formation and evolution of the Milky Way.Comment: 4 pages, 3 figures, proceedings of "Seismology of the Sun and the
Distant Stars 2016", Mario J. P. F. G. Monteiro, Margarida S. Cunha, Joao
Miguel T. Ferreira editor
E´ chelle diagrams and period spacings of g modes in: Doradus stars from four years of Kepler observations
We use photometry from the Kepler Mission to study oscillations in Doradus stars. Some stars show remarkably clear sequences of g modes and we use period ´echelle diagrams to measure period spacings and identifyrotationally split multiplets with ` = 1 and ` = 2.We find small deviations from regular period spacings that arise from the gradient in the chemical composition just outside the convective core. We also find stars for which the period spacing shows a strong linear trend as a function of period, consistent with relatively rapid rotation. Overall, th
- …
