113 research outputs found
Magnetic anisotropy, first-order-like metamagnetic transitions and large negative magnetoresistance in the single crystal of GdPdSi
Electrical resistivity (), magnetoresistance (MR), magnetization,
thermopower and Hall effect measurements on the single crystal
GdPdSi, crystallizing in an AlB-derived hexagonal structure are
reported. The well-defined minimum in at a temperature above N\'eel
temperature (T= 21 K) and large negative MR below 3T, reported
earlier for the polycrystals, are reproducible even in single crystals. Such
features are generally uncharacteristic of Gd alloys. In addition, we also
found interesting features in other data, e.g., two-step first-order-like
metamagnetic transitions for the magnetic field along [0001] direction. The
alloy exhibits anisotropy in all these properties, though Gd is a S-state ion.Comment: RevTeX, 5 pages, 6 encapsulated postscript figures; scheduled to be
published in Phy. Rev. B (01 November 1999, B1
Field-Induced Magnetization Steps in Intermetallic Compounds and Manganese Oxides: The Martensitic Scenario
Field-induced magnetization jumps with similar characteristics are observed
at low temperature for the intermetallic germanide Gd5Ge4and the mixed-valent
manganite Pr0.6Ca0.4Mn0.96Ga0.04O3. We report that the field location -and even
the existence- of these jumps depends critically on the magnetic field sweep
rate used to record the data. It is proposed that, for both compounds, the
martensitic character of their antiferromagnetic-to-ferromagnetic transitions
is at the origin of the magnetization steps.Comment: 4 pages,4 figure
High-coercivity ultralight transparent magnets
This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Magnetic silica-aerogel composites have been synthesized by dispersing hard magnetic Nd2Fe14B particles in a sol during a fast sol-gel process and subsequently supercritically drying the resulting gels. The composites are found to retain most of the outstanding properties of their constituents: the large coercivity and moderate remanence of the magnetic powders and the transparency and low density of silica aerogels. Moreover, aerogels synthesized in the presence of a magnetic field exhibit the alignment of the particles, forming needle-like structures along the direction of the applied magnetic field, which results in optical and magnetic anisotropies. Due to their unique combination of properties, these types of materials may be appealing for magneto-optics and magnetic actuator applications
Hydrostatic pressure control of the magnetostructural phase transition in Gd5Si2Ge2 single crystals
Magnetic and structural properties of single crystalline Gd5Si2Ge2 under hydrostatic pressure have been characterized by using magnetization, linear thermal expansion, and compressibility measurements. A strong dependence of Curie temperature on pressure, dTC∕dP=+4.8 K∕kbar, is observed in contrast with the smaller values of about 3 K∕kbar found in polycrystalline specimens. This difference reflects the role the microstructure may play in pressure-induced magnetic-crystallographic phase changes, likely related to stress relaxation at the grain boundaries, domain pinning and/or nucleation of defects. The pressure dependence of the critical magnetic field, d(dHC∕dT)∕dP, drops at the rate −0.122(5)kOe∕K kbar, which points to an enhancement of the magnetoelastic coupling with pressure. The latter affects the magnetocaloric behavior of the material at the rate d(ΔSM)∕dP≅1.8 J∕kg K kbar. The linear thermal expansion confirms the strongly anisotropic change of the lattice parameters through the orthorhombic to monoclinic crystallographic transformation with Δa∕a=+0.94%, Δb∕b=−0.13%, and Δc∕c=−0.22%. The structural transition temperature varies with pressure synchronously with the Curie temperature, and the size and shape of the strain anomalies remain nearly unaffected by the hydrostatic pressure, indicating, respectively, that the structural and magnetic transformations remain coupled, and the anisotropic behavior of the lattice is preserved as pressure increases. The room temperature linear compressibility data show that the magnetostructural transformation can be triggered isothermally at ∼6 kbar and that the compressibility is anisotropic
Magnetic properties of Ni2.18Mn0.82Ga Heusler alloys with a coupled magnetostructural transition
Polycrystalline Ni2.18Mn0.82Ga Heusler alloys with a coupled
magnetostructural transition are studied by differential scanning calorimetry,
magnetic and resistivity measurements. Coupling of the magnetic and structural
subsystems results in unusual magnetic features of the alloy. These uncommon
magnetic properties of Ni2.18Mn0.82Ga are attributed to the first-order
structural transition from a tetragonal ferromagnetic to a cubic paramagnetic
phase.Comment: 4 pages, 4 figures, revtex
Tuning morphology and magnetism in epitaxial L10-FePt films
In this work, well-ordered epitaxial FePt thin ¿lms have been grown by RF sputtering on two different substrates (MgO (100) and SrTiO3 (100)) and the effect of different lattice parameters between the substrate and FePt ¿lm on morphology and magnetic behavior has been considered. Growth conditions have been optimized to obtain different morphologies and magnetic behaviors
Characteristic length scale of the magnon accumulation in Fe3O4/Pt bilayer structures by incoherent thermal excitation
The dependence of Spin Seebeck effect (SSE) with the thickness of the magnetic materials is studied by means of incoherent thermal excitation. The SSE voltage signal in Fe3O4/Pt bilayer structure increases with the magnetic material thickness up to 100¿nm, approximately, showing signs of saturation for larger thickness. This dependence is well described in terms of a spin current pumped in the platinum film by the magnon accumulation in the magnetic material. The spin current is generated by a gradient of temperature in the system and detected by the Pt top contact by means of inverse spin Hall effect. Calculations in the frame of the linear response theory adjust with a high degree of accuracy the experimental data, giving a thermal length scale of the magnon accumulation (¿) of 17¿±¿3¿nm at 300¿K and ¿¿=¿40¿±¿10¿nm at 70¿K
- …
