2,629 research outputs found
A pressão coronária (às vezes) mente. . .
Comment on:
Comparative analysis of fractional flow reserve and instantaneous wave-free ratio: Results of a five-year registry. [Rev Port Cardiol. 2018]info:eu-repo/semantics/publishedVersio
The Multi-center Evaluation of the Accuracy of the Contrast MEdium INduced Pd/Pa RaTiO in Predicting FFR (MEMENTO-FFR) Study.
AIMS:
Adenosine administration is needed for the achievement of maximal hyperaemia fractional flow reserve (FFR) assessment. The objective was to test the accuracy of Pd/Pa ratio registered during submaximal hyperaemia induced by non-ionic contrast medium (contrast FFR [cFFR]) in predicting FFR and comparing it to the performance of resting Pd/Pa in a collaborative registry of 926 patients enrolled in 10 hospitals from four European countries (Italy, Spain, France and Portugal).
METHODS AND RESULTS:
Resting Pd/Pa, cFFR and FFR were measured in 1,026 coronary stenoses functionally evaluated using commercially available pressure wires. cFFR was obtained after intracoronary injection of contrast medium, while FFR was measured after administration of adenosine. Resting Pd/Pa and cFFR were significantly higher than FFR (0.93±0.05 vs. 0.87±0.08 vs. 0.84±0.08, p<0.001). A strong correlation and a close agreement at Bland-Altman analysis between cFFR and FFR were observed (r=0.90, p<0.001 and 95% CI of disagreement: from -0.042 to 0.11). ROC curve analysis showed an excellent accuracy (89%) of the cFFR cut-off of ≤0.85 in predicting an FFR value ≤0.80 (AUC 0.95 [95% CI: 0.94-0.96]), significantly better than that observed using resting Pd/Pa (AUC: 0.90, 95% CI: 0.88-0.91; p<0.001). A cFFR/FFR hybrid approach showed a significantly lower number of lesions requiring adenosine than a resting Pd/Pa/FFR hybrid approach (22% vs. 44%, p<0.0001).
CONCLUSIONS:
cFFR is accurate in predicting the functional significance of coronary stenosis. This could allow limiting the use of adenosine to obtain FFR to a minority of stenoses with considerable savings of time and costs.info:eu-repo/semantics/publishedVersio
cFFR as an alternative to FFR: please do not contrast simplicity!
info:eu-repo/semantics/publishedVersio
Turbulence Hierarchy in a Random Fibre Laser
Turbulence is a challenging feature common to a wide range of complex
phenomena. Random fibre lasers are a special class of lasers in which the
feedback arises from multiple scattering in a one-dimensional disordered
cavity-less medium. Here, we report on statistical signatures of turbulence in
the distribution of intensity fluctuations in a continuous-wave-pumped
erbium-based random fibre laser, with random Bragg grating scatterers. The
distribution of intensity fluctuations in an extensive data set exhibits three
qualitatively distinct behaviours: a Gaussian regime below threshold, a mixture
of two distributions with exponentially decaying tails near the threshold, and
a mixture of distributions with stretched-exponential tails above threshold.
All distributions are well described by a hierarchical stochastic model that
incorporates Kolmogorov's theory of turbulence, which includes energy cascade
and the intermittence phenomenon. Our findings have implications for explaining
the remarkably challenging turbulent behaviour in photonics, using a random
fibre laser as the experimental platform.Comment: 9 pages, 5 figure
Production of bioethanol from sweet potato, agro industrial wastes
One fraction of the existent petroleum is not extractable or the difficulties associated to extraction are
very expensive making them unviable. This situation leads to a decrease in petroleum stocks all over
the world and a resulting increment on its price, affecting in particular the transportation sector, since
there is no relevant alternative to fossil petroleum
Observation of Replica Symmetry Breaking in the 1D Anderson Localization Regime in an Erbium-Doped Random Fiber Laser
The analogue of the paramagnetic to spin-glass phase transition in disordered
magnetic systems, leading to the phenomenon of replica symmetry breaking, has
been recently demonstrated in a two-dimensional random laser consisting of an
organic-based amorphous solid-state thin film. We report here the first
demonstration of replica symmetry breaking in a one-dimensional photonic system
consisting of an erbium-doped random fiber laser operating in the
continuous-wave regime based on a unique random fiber grating system, which
plays the role of the random scatterers and operates in the Anderson
localization regime. The clear transition from a photonic paramagnetic to a
photonic spin glass phase, characterized by the probability distribution
function of the Parisi overlap, was verified and characterized. In this unique
system, the radiation field interacts only with the gain medium, and the fiber
grating, which provides the disordered feedback mechanism, does not interfere
with the pump
Cooling Strategies for Greenhouses in Summer: Control of Fogging by Pulse Width Modulation
The possibilities for improving the control of greenhouse fogging systems, were studied by comparing several combinations of ventilation cooling techniques, shade screening and low-pressure fogging. The study was divided into three parts: experiments, modelling and simulations. In the first part of the paper, ten combinations of five cooling techniques were tested during the summers of 2002 and 2003 in a 132m2 greenhouse with a steel structure and a single-layer methacrylate cover located in Madrid, Spain. An analysis of variance of the climatic parameters was carried out to determine which combinations produced significant differences in inside temperature or relative humidity. Comparing the values for the inside to outside temperature difference, the combination of a shade screen and above-screen fogging achieved a difference in temperature almost the same as that for under-screen fogging, but the relative humidity was significantly lower. In the second part of the study a dynamic model was developed (2002) and validated (2003). The mean absolute error obtained for inside temperature was similar in the fit and the validation and it was less than 1.5 1C in both cases. The model was used to simulate the inside air temperature for a fog system working without shading, and above and under a shade screen. Control algorithms were developed for reducing system water consumption. In the three cases a simple on/off control with a fixed fogging cycle was compared with a pulse width modulation (PWM) strategy, in which the duration of the fogging pulse was increased as a function of inside temperature. The strategies with PWM applied to the fog system were able to reduce water consumption by 8–15% with respect to the strategies with a fixed fogging cycle
- …
