3,690 research outputs found
High-frequency oscillations in low-dimensional conductors and semiconductor superlattices induced by current in stack direction
A narrow energy band of the electronic spectrum in some direction in
low-dimensional crystals may lead to a negative differential conductance and
N-shaped I-V curve that results in an instability of the uniform stationary
state. A well-known stable solution for such a system is a state with electric
field domain. We have found a uniform stable solution in the region of negative
differential conductance. This solution describes uniform high-frequency
voltage oscillations. Frequency of the oscillation is determined by antenna
properties of the system. The results are applicable also to semiconductor
superlattices.Comment: 8 pages, 3 figure
Electron Bloch Oscillations and Electromagnetic Transparency of Semiconductor Superlattices in Multi-Frequency Electric Fields
We examine phenomenon of electromagnetic transparency in semiconductor
superlattices (having various miniband dispersion laws) in the presence of
multi-frequency periodic and non-periodic electric fields. Effects of induced
transparency and spontaneous generation of static fields are discussed. We paid
a special attention on a self-induced electromagnetic transparency and its
correlation to dynamic electron localization. Processes and mechanisms of the
transparency formation, collapse, and stabilization in the presence of external
fields are studied. In particular, we present the numerical results of the time
evolution of the superlattice current in an external biharmonic field showing
main channels of transparency collapse and its partial stabilization in the
case of low electron density superlattices
Negative high-frequency differential conductivity in semiconductor superlattices
We examine the high-frequency differential conductivity response properties
of semiconductor superlattices having various miniband dispersion laws. Our
analysis shows that the anharmonicity of Bloch oscillations (beyond
tight-binding approximation) leads to the occurrence of negative high-frequency
differential conductivity at frequency multiples of the Bloch frequency. This
effect can arise even in regions of positive static differential conductivity.
The influence of strong electron scattering by optic phonons is analyzed. We
propose an optimal superlattice miniband dispersion law to achieve
high-frequency field amplification
On the nature of the solar-wind-Mars interaction
Plasma measurements near Mars on the U.S.S.R. Mars-2, -3, and -5 spacecraft are considered. The data are compared with simultaneous magnetic measurements. Strong evidence is obtained in favor of a direct interaction and mass exchange between the solar wind plasma and the gaseous envelope of Mars
Prediction for new magnetoelectric fluorides
We use symmetry considerations in order to predict new magnetoelectric
fluorides. In addition to these magnetoelectric properties, we discuss among
these fluorides the ones susceptible to present multiferroic properties. We
emphasize that several materials present ferromagnetic properties. This
ferromagnetism should enhance the interplay between magnetic and dielectric
properties in these materials.Comment: 12 pages, 4 figures, To appear in Journal of Physics: Condensed
Matte
Observability inequalities for transport equations through Carleman estimates
We consider the transport equation \ppp_t u(x,t) + H(t)\cdot \nabla u(x,t) =
0 in \OOO\times(0,T), where and \OOO\subset \R^d is a bounded
domain with smooth boundary \ppp\OOO. First, we prove a Carleman estimate for
solutions of finite energy with piecewise continuous weight functions. Then,
under a further condition which guarantees that the orbits of intersect
\ppp\OOO, we prove an energy estimate which in turn yields an observability
inequality. Our results are motivated by applications to inverse problems.Comment: 18 pages, 3 figure
Exciton spin decay modified by strong electron-hole exchange interaction
We study exciton spin decay in the regime of strong electron-hole exchange
interaction. In this regime the electron spin precession is restricted within a
sector formed by the external magnetic field and the effective exchange fields
triggered by random spin flips of the hole. Using Hanle effect measurements, we
demonstrate that this mechanism dominates our experiments in CdTe/(Cd,Mg)Te
quantum wells. The calculations provide a consistent description of the
experimental results, which is supported by independent measurements of the
parameters entering the model.Comment: 5 pages, 3 figure
- …
