15,116 research outputs found
Man-computer role in space navigation and guidance Final report
Man computer roles and hardware requirements for navigation and guidance in deep space manned mission
Man-computer roles in space navigation and guidance, phase I
Estimated man-machine requirement computations for space navigation and guidanc
Bound States of the Klein-Gordon Equation for Woods-Saxon Potential With Position Dependent Mass
The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon
potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues
and the corresponding eigenfunctions are computed. Results are also given for
the constant mass case.Comment: 13 page
Global shallow water magnetohydrodynamic waves in the solar tachocline
We derive analytical solutions and dispersion relations of global magnetic
Poincar\'e (magneto-gravity) and magnetic Rossby waves in the approximation of
shallow water magnetohydrodynamics. The solutions are obtained in a rotating
spherical coordinate system for strongly and weakly stable stratification
separately in the presence of toroidal magnetic field. In both cases magnetic
Rossby waves split into fast and slow magnetic Rossby modes. In the case of
strongly stable stratification (valid in the radiative part of the tachocline)
all waves are slightly affected by the layer thickness and the toroidal
magnetic field, while in the case of weakly stable stratification (valid in the
upper overshoot layer of the tachocline) magnetic Poincar\'e and fast magnetic
Rossby waves are found to be concentrated near the solar equator, leading to
equatorially trapped waves. However, slow magnetic Rossby waves tend to
concentrate near the poles, leading to polar trapped waves. The frequencies of
all waves are smaller in the upper weakly stable stratification region than in
the lower strongly stable stratification one
Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion
We present an analytic method based on the Hadamard-WKB expansion to
calculate the self-force for a particle with scalar charge that undergoes
radial infall in a Schwarzschild spacetime after being held at rest until a
time t = 0. Our result is valid in the case of short duration from the start.
It is possible to use the Hadamard-WKB expansion in this case because the value
of the integral of the retarded Green's function over the particle's entire
past trajectory can be expressed in terms of two integrals over the time period
that the particle has been falling. This analytic result is expected to be
useful as a check for numerical prescriptions including those involving mode
sum regularization and for any other analytical approximations to self-force
calculations.Comment: 22 pages, 2 figures, Physical Review D version along with the
corrections given in the erratu
Diffusive transport in networks built of containers and tubes
We developed analytical and numerical methods to study a transport of
non-interacting particles in large networks consisting of M d-dimensional
containers C_1,...,C_M with radii R_i linked together by tubes of length l_{ij}
and radii a_{ij} where i,j=1,2,...,M. Tubes may join directly with each other
forming junctions. It is possible that some links are absent. Instead of
solving the diffusion equation for the full problem we formulated an approach
that is computationally more efficient. We derived a set of rate equations that
govern the time dependence of the number of particles in each container
N_1(t),N_2(t),...,N_M(t). In such a way the complicated transport problem is
reduced to a set of M first order integro-differential equations in time, which
can be solved efficiently by the algorithm presented here. The workings of the
method have been demonstrated on a couple of examples: networks involving
three, four and seven containers, and one network with a three-point junction.
Already simple networks with relatively few containers exhibit interesting
transport behavior. For example, we showed that it is possible to adjust the
geometry of the networks so that the particle concentration varies in time in a
wave-like manner. Such behavior deviates from simple exponential growth and
decay occurring in the two container system.Comment: 21 pages, 18 figures, REVTEX4; new figure added, reduced emphasis on
graph theory, additional discussion added (computational cost, one
dimensional tubes
Higher-order Continuum Approximation for Rarefied Gases
The Hilbert-Chapman-Enskog expansion of the kinetic equations in mean flight
times is believed to be asymptotic rather than convergent. It is therefore
inadvisable to use lower order results to simplify the current approximation as
is done in the traditional Chapman-Enskog procedure, since that is an iterative
method. By avoiding such recycling of lower order results, one obtains
macroscopic equations that are asymptotically equivalent to the ones found in
the Chapman-Enskog approach. The new equations contain higher order terms that
are discarded in the Chapman-Enskog method. These make a significant impact on
the results for such problems as ultrasound propagation. In this paper, it is
shown that these results turn out well with relatively little complication when
the expansions are carried to second order in the mean free time, for the
example of the relaxation or BGK model of kinetic theory.Comment: 20 pages, 2 figures, RevTeX 4 macro
Suppressing Diffusion-Mediated Exciton Annihilation in 2D Semiconductors Using the Dielectric Environment
Atomically thin semiconductors such as monolayer MoS2 and WS2 exhibit
nonlinear exciton-exciton annihilation at notably low excitation densities
(below ~10 excitons/um2 in MoS2). Here, we show that the density threshold at
which annihilation occurs can be tuned by changing the underlying substrate.
When the supporting substrate is changed from SiO2 to Al2O3 or SrTiO3, the rate
constant for second-order exciton-exciton annihilation, k_XX [cm2/s], is
reduced by one or two orders of magnitude, respectively. Using transient
photoluminescence microscopy, we measure the effective room-temperature exciton
diffusion coefficient in chemical-treated MoS2 to be D = 0.06 +/- 0.01 cm2/s,
corresponding to a diffusion length of LD = 350 nm for an exciton lifetime of
{\tau} = 20 ns, which is independent of the substrate. These results, together
with numerical simulations, suggest that the effective exciton-exciton
annihilation radius monotonically decreases with increasing refractive index of
the underlying substrate. Exciton-exciton annihilation limits the overall
efficiency of 2D semiconductor devices operating at high exciton densities; the
ability to tune these interactions via the dielectric environment is an
important step toward more efficient optoelectronic technologies featuring
atomically thin materials
Amplitude Modulation and Relaxation-Oscillation of Counterpropagating Rolls within a Broken-Symmetry Laser-Induced Electroconvection Strip
We report a liquid-crystal pattern-formation experiment in which we break the
lateral (translational) symmetry of a nematic medium with a laser-induced
thermal gradient. The work is motivated by an improved measurement (reported
here) of the temperature dependence of the electroconvection threshold voltage
in planar-nematic 4-methoxybenzylidene-4-butylaniline (MBBA). In contrast with
other broken-symmetry-pattern studies that report a uniform drift, we observe a
strip of counterpropagating rolls that collide at a sink point, and a strong
temporally periodic amplitude modulation within a width of 3-4 rolls about the
sink point. The time dependence of the amplitude at a fixed position is
periodic but displays a nonsinusoidal relaxation-oscillation profile. After
reporting experimental results based on spacetime contours and wavenumber
profiles, along with a measurement of the change in the drift frequency with
applied voltage at a fixed control parameter, we propose some potential
guidelines for a theoretical model based on saddle-point solutions for
Eckhaus-unstable states and coupled complex Ginzburg-Landau equations.
Published in PRE 73, 036317 (2006).Comment: Published in Physical Review E in March 200
- …
