316 research outputs found
Characterization of non-aged and aged modern Prussian Blue pigments by Mössbauer spectroscopy, x-ray powder diffraction and x-ray absorption spectroscopy
C
The quiet Sun average Doppler shift of coronal lines up to 2 MK
The average Doppler shift shown by spectral lines formed from the
chromosphere to the corona reveals important information on the mass and energy
balance of the solar atmosphere, providing an important observational
constraint to any models of the solar corona. Previous spectroscopic
observations of vacuum ultra-violet (VUV) lines have revealed a persistent
average wavelength shift of lines formed at temperatures up to 1 MK. At higher
temperatures, the behaviour is still essentially unknown. Here we analyse
combined SUMER/SoHO and EIS/Hinode observations of the quiet Sun around disk
centre to determine, for the first time, the average Doppler shift of several
spectral lines formed between 1 and 2 MK, where the largest part of the quiet
coronal emission is formed. The measurements are based on a novel technique
applied to EIS spectra to measure the difference in Doppler shift between lines
formed at different temperatures. Simultaneous wavelength-calibrated SUMER
spectra allow establishing the absolute value at the reference temperature of 1
MK. The average line shifts at 1 MK < T < 1.8 MK are modestly, but clearly
bluer than those observed at 1 MK. By accepting an average blue shift of about
(-1.8+/-0.6) km/s at 1 MK (as provided by SUMER measurements), this translates
into a maximum Doppler shift of (-4.4+/-2.2) km/s around 1.8 MK. The measured
value appears to decrease to about (-1.3+/-2.6) km/s at the Fe XV formation
temperature of 2.1 MK. The measured average Doppler shift between 0.01 and 2.1
MK, for which we provide a parametrisation, appears to be qualitatively and
roughly quantitatively consistent with what foreseen by 3-D coronal models
where heating is produced by dissipation of currents induced by photospheric
motions and by reconnection with emerging magnetic flux.Comment: 9 pages, 10 figures. Astronomy and Astrophysics (in press
Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars
Convective line asymmetries in the optical spectrum of two metal-poor stars,
Gmb1830 and HD140283, are compared to those observed for solar metallicity
stars. The line bisectors of the most metal-poor star, the subgiant HD140283,
show a significantly larger velocity span that the expectations for a
solar-metallicity star of the same spectral type and luminosity class. The
enhanced line asymmetries are interpreted as the signature of the lower metal
content, and therefore opacity, in the convective photospheric patterns. These
findings point out the importance of three-dimensional convective velocity
fields in the interpretation of the observed line asymmetries in metal-poor
stars, and in particular, urge for caution when deriving isotopic ratios from
observed line shapes and shifts using one-dimensional model atmospheres.
The mean line bisector of the photospheric atomic lines is compared with
those measured for the strong Mg I b1 and b2 features. The upper part of the
bisectors are similar, and assuming they overlap, the bottom end of the
stronger lines, which are formed higher in the atmosphere, goes much further to
the red. This is in agreement with the expected decreasing of the convective
blue-shifts in upper atmospheric layers, and compatible with the high velocity
redshifts observed in the chromosphere, transition region, and corona of
late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in
The Astrophysical Journa
Fundamental Physics with the Laser Astrometric Test Of Relativity
The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S.
Michelson-Morley-type experiment designed to test the pure tensor metric nature
of gravitation - a fundamental postulate of Einstein's theory of general
relativity. By using a combination of independent time-series of highly
accurate gravitational deflection of light in the immediate proximity to the
Sun, along with measurements of the Shapiro time delay on interplanetary scales
(to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will
significantly improve our knowledge of relativistic gravity. The primary
mission objective is to i) measure the key post-Newtonian Eddington parameter
\gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for
presence of a new interaction in gravitational theory, and, in its search,
LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test.
The mission will also provide: ii) first measurement of gravity's non-linear
effects on light to ~0.01% accuracy; including both the Eddington \beta
parameter and also the spatial metric's 2nd order potential contribution (never
measured before); iii) direct measurement of the solar quadrupole moment J2
(currently unavailable) to accuracy of a part in 200 of its expected size; iv)
direct measurement of the "frame-dragging" effect on light by the Sun's
gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to
unprecedented accuracy the search for cosmologically relevant scalar-tensor
theories of gravity by looking for a remnant scalar field in today's solar
system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC,
Noodrwijk, The Netherland
A Mission to Explore the Pioneer Anomaly
The Pioneer 10 and 11 spacecraft yielded the most precise navigation in deep
space to date. These spacecraft had exceptional acceleration sensitivity.
However, analysis of their radio-metric tracking data has consistently
indicated that at heliocentric distances of astronomical units,
the orbit determinations indicated the presence of a small, anomalous, Doppler
frequency drift. The drift is a blue-shift, uniformly changing with a rate of
Hz/s, which can be interpreted as a
constant sunward acceleration of each particular spacecraft of . This signal has become known as the Pioneer
anomaly. The inability to explain the anomalous behavior of the Pioneers with
conventional physics has contributed to growing discussion about its origin.
There is now an increasing number of proposals that attempt to explain the
anomaly outside conventional physics. This progress emphasizes the need for a
new experiment to explore the detected signal. Furthermore, the recent
extensive efforts led to the conclusion that only a dedicated experiment could
ultimately determine the nature of the found signal. We discuss the Pioneer
anomaly and present the next steps towards an understanding of its origin. We
specifically focus on the development of a mission to explore the Pioneer
Anomaly in a dedicated experiment conducted in deep space.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium
"Trends in Space Science and Cosmic Vision 2020", 19-21 April 2005, ESTEC,
Noordwijk, The Netherland
Recommended from our members
Multi-scale sensible heat fluxes in the urban environment from large aperture scintillometry and eddy covariance
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions
Pharmacological targeting of the protein synthesis mTOR/4E-BP1 pathway in cancer-associated fibroblasts abrogates pancreatic tumourchemoresistance
International audiencePancreatic ductal adenocarcinoma (PDAC) is extremely stroma-rich. Cancer-associated fibroblasts (CAFs) secrete proteins that activate survival and promote chemoresistance of cancer cells. Our results demonstrate that CAF secretome-triggered chemoresistance is abolished upon inhibition of the protein synthesis mTOR/4E-BP1 regulatory pathway which we found highly activated in primary cultures of -SMA-positive CAFs, isolated from human PDAC resections. CAFs selectively express the sst1 somatostatin receptor. The SOM230 analogue (Pasireotide) activates the sst1 receptor and inhibits the mTOR/4E-BP1 pathway and the resultant synthesis of secreted proteins including IL-6. Consequently, tumour growth and chemoresistance in nude mice xenografted with pancreatic cancer cells and CAFs, or with pieces of resected human PDACs, are reduced when chemotherapy (gemcitabine) is combined with SOM230 treatment. While gemcitabine alone has marginal effects, SOM230 is permissive to gemcitabine-induced cancer cell apoptosis and acts as an antifibrotic agent. We propose that selective inhibition of CAF protein synthesis with sst1-directed pharmacological compounds represents an anti-stromal-targeted therapy with promising chemosensitization potential
Urapidyl for hypertension control in severe pre-eclampsia: a comparative study with nicardipine
The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications
Background: Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. Results: We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Conclusion: Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested
- …
