38,603 research outputs found

    Environmental factors influencing the spread of the highly pathogenic avian influenza H5N1 virus in wild birds in Europe

    Get PDF
    A large number of occurrences of the highly pathogenic avian influenza (HPAI) H5N1 virus in wild birds were reported in Europe. The relationship between the occurrence pattern and environmental factors has, however, not yet been explored. This research uses logistic regression to quantify the relationships between anthropogenic or physical environmental factors and HPAI H5N1 occurrences. Our results indicate that HPAI H5N1 occurrences are highly correlated with the following: the increased normalized difference vegetation index (NDVI) in December; intermediate NDVI in March; lower elevations; increased minimum temperatures in January; and reduced precipitation in January. A predictive risk map of HPAI H5N1 occurrences in wild birds in Europe was generated on the basis of five key environmental factors. Independent validation of the risk map showed the predictive model to be of high accuracy (79%). The analysis suggests that HPAI H5N1 occurrences in wild birds are strongly influenced by the availability of food resources and are facilitated by increased temperatures and reduced precipitation. We therefore deduced that HPAI H5N1 occurrences in wild birds in Europe are probably caused by contact with other wild birds and not by contact with domestic poultry. These findings are important considerations for the global surveillance of HPAI H5N1 occurrences in wild birds

    GeV Majorana Neutrinos in Top-quark Decay at the LHC

    Full text link
    We explore the \Delta L=2 same-sign dilepton signal from top-quark decay via a Majorana neutrino at the LHC in the top anti-top pair production samples. The signature is same-sign dilepton plus multi-jets with no significant missing energy. The most optimistic region lies where the Majorana neutrino mass is between 15-65 GeV. For 300 fb^-1 integrated luminosity, it is possible to probe S_{ij}, the effective mixing parameter, to order of 10^-5.Comment: 15 pages, 8 figure

    A grid-based infrastructure for distributed retrieval

    Get PDF
    In large-scale distributed retrieval, challenges of latency, heterogeneity, and dynamicity emphasise the importance of infrastructural support in reducing the development costs of state-of-the-art solutions. We present a service-based infrastructure for distributed retrieval which blends middleware facilities and a design framework to ‘lift’ the resource sharing approach and the computational services of a European Grid platform into the domain of e-Science applications. In this paper, we give an overview of the DILIGENT Search Framework and illustrate its exploitation in the field of Earth Science

    Surface effects on the Mott-Hubbard transition in archetypal V2_2O3_3

    Full text link
    We present an experimental and theoretical study exploring surface effects on the evolution of the metal-insulator transition in the model Mott-Hubbard compound Cr-doped V2_2O3_3. We find a microscopic domain formation that is clearly affected by the surface crystallographic orientation. Using scanning photoelectron microscopy and X-ray diffraction, we find that surface defects act as nucleation centers for the formation of domains at the temperature-induced isostructural transition and favor the formation of microscopic metallic regions. A density functional theory plus dynamical mean field theory study of different surface terminations shows that the surface reconstruction with excess vanadyl cations leads to doped, and hence more metallic surface states, explaining our experimental observations.Comment: 5 pages, 4 figure

    Quantum Chemistry, Anomalous Dimensions, and the Breakdown of Fermi Liquid Theory in Strongly Correlated Systems

    Full text link
    We formulate a local picture of strongly correlated systems as a Feynman sum over atomic configurations. The hopping amplitudes between these atomic configurations are identified as the renormalization group charges, which describe the local physics at different energy scales. For a metallic system away from half-filling, the fixed point local Hamiltonian is a generalized Anderson impurity model in the mixed valence regime. There are three types of fixed points: a coherent Fermi liquid (FL) and two classes of self-similar (scale invariant) phases which we denote incoherent metallic states (IMS). When the transitions between the atomic configurations proceed coherently at low energies, the system is a Fermi liquid. Incoherent transitions between the low energy atomic configurations characterize the incoherent metallic states. The initial conditions for the renormalization group flow are determined by the physics at rather high energy scales. This is the domain of local quantum chemistry. We use simple quantum chemistry estimates to specify the basin of attraction of the IMS fixed points.Comment: 12 pages, REVTE

    On Universality in Human Correspondence Activity

    Get PDF
    Identifying and modeling patterns of human activity has important ramifications in applications ranging from predicting disease spread to optimizing resource allocation. Because of its relevance and availability, written correspondence provides a powerful proxy for studying human activity. One school of thought is that human correspondence is driven by responses to received correspondence, a view that requires distinct response mechanism to explain e-mail and letter correspondence observations. Here, we demonstrate that, like e-mail correspondence, the letter correspondence patterns of 16 writers, performers, politicians, and scientists are well-described by the circadian cycle, task repetition and changing communication needs. We confirm the universality of these mechanisms by properly rescaling letter and e-mail correspondence statistics to reveal their underlying similarity.Comment: 17 pages, 3 figures, 1 tabl

    Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling

    Full text link
    Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter λSOC\lambda_{\rm{SOC}} in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling JKJ_{\text{K}} and the chemical potential μ\mu -- both essential parameters determining the ground state of the material -- and thus possible λSOC\lambda_{\rm{SOC}} tuning effects have remained unnoticed. Here we present the successful growth of the substitution series Ce3_3Bi4_4(Pt1x_{1-x}Pdx_x)3_3 (0x10 \le x \le 1) of the archetypal (noncentrosymmetric) Kondo insulator Ce3_3Bi4_4Pt3_3. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and therefore likely to leave JKJ_{\text{K}} and μ\mu essentially unchanged. By contrast, the large mass difference between the 5d5d element Pt and the 4d4d element Pd leads to a large difference in λSOC\lambda_{\rm{SOC}}, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing xx (decreasing λSOC\lambda_{\rm{SOC}}), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce3_3Bi4_4Pd3_3 shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.Comment: 6 pages, 5 figures plus Supplemental Materia
    corecore