4,313 research outputs found
CO excitation in the Seyfert galaxy NGC7130
We present a coherent multi-band modelling of the CO Spectral Energy
Distribution of the local Seyfert Galaxy NGC7130 to assess the impact of the
AGN activity on the molecular gas. We take advantage of all the available data
from X-ray to the sub-mm, including ALMA data. The high-resolution (~0.2") ALMA
CO(6-5) data constrain the spatial extension of the CO emission down to ~70 pc
scale. From the analysis of the archival CHANDRA and NuSTAR data, we infer the
presence of a buried, Compton-thick AGN of moderate luminosity, L_2-10keV ~
1.6x10^{43} ergs-1. We explore photodissociation and X-ray-dominated regions
(PDRs and XDRs) models to reproduce the CO emission. We find that PDRs can
reproduce the CO lines up to J~6, however, the higher rotational ladder
requires the presence of a separate source of excitation. We consider X-ray
heating by the AGN as a source of excitation, and find that it can reproduce
the observed CO Spectral Energy Distribution. By adopting a composite PDR+XDR
model, we derive molecular cloud properties. Our study clearly indicates the
capabilities offered by current-generation of instruments to shed light on the
properties of nearby galaxies adopting state-of-the art physical modelling.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter
CO excitation in the Seyfert galaxy NGC 34: stars, shock or AGN driven?
We present a detailed analysis of the X-ray and molecular gas emission in the
nearby galaxy NGC 34, to constrain the properties of molecular gas, and assess
whether, and to what extent, the radiation produced by the accretion onto the
central black hole affects the CO line emission. We analyse the CO Spectral
Line Energy Distribution (SLED) as resulting mainly from Herschel and ALMA
data, along with X-ray data from NuSTAR and XMM-Newton. The X-ray data analysis
suggests the presence of a heavily obscured AGN with an intrinsic luminosity of
L erg s. ALMA high
resolution data () allows us to scan the nuclear region
down to a spatial scale of pc for the CO(6-5) transition. We
model the observed SLED using Photo-Dissociation Region (PDR), X-ray-Dominated
Region (XDR), and shock models, finding that a combination of a PDR and an XDR
provides the best fit to the observations. The PDR component, characterized by
gas density and temperature K,
reproduces the low-J CO line luminosities. The XDR is instead characterised by
a denser and warmer gas (, K), and is
necessary to fit the high-J transitions. The addition of a third component to
account for the presence of shocks has been also tested but does not improve
the fit of the CO SLED. We conclude that the AGN contribution is significant in
heating the molecular gas in NGC 34.Comment: Accepted for publication in MNRAS. 10 pages, 6 figure
X-ray observation of ULAS J1120+0641, the most distant quasar at z=7.08
We aim at probing the emission mechanism of the accreting super massive black
holes in the high redshift Universe. We study the X-ray spectrum of
ULAS1120+0641, the highest redshift quasar detected so far at z=7.085, which
has been deeply observed (340 ks) by XMM-Newton. Despite the long integration
time the spectral analysis is limited by the poor statistics, with only 150
source counts being detected. We measured the spectrum in the 2-80 keV
rest-frame (0.3-10 keV observed) energy band. Assuming a simple power law model
we find a photon index of 2.0+/-0.3 and a luminosity of 6.7+/-0.3 10^44 erg/s
in the 2-10 keV band, while the intrinsic absorbing column can be only loosely
constrained (NH< 1E23 cm^-2). Combining our data with published data we
calculate that the X-ray-to-optical spectral index alpha_OX is1.8+/-0.1, in
agreement with the alpha_OX-UV luminosity correlation valid for lower redshift
quasars. We expanded to high energies the coverage of the spectral energy
distribution of ULAS1120+0641. This is the second time that a z >6 quasar has
been investigated through a deep X-ray observation. In agreement with previous
studies of z~6 AGN samples, we do not find any hint of evolution in the
broadband energy distribution. Indeed from our dataset ULAS 1120+0641 is
indistinguishable from the population of optically bright quasar at lower
redshift.Comment: 5 pages, 4 figures, A&A in press; updated with the accepted versio
Compton-thick AGN in the NuSTAR era II: A deep NuSTAR and XMM-Newton view of the candidate Compton thick AGN in NGC 1358
We present the combined NuSTATR and XMM-Newton 0.6-79 keV spectral analysis
of a Seyfert 2 galaxy, NGC 1358, which we selected as a candidate Compton thick
(CT-) active galactic nucleus (AGN) on the basis of previous Swift/BAT and
Chandra studies. According to our analysis, NGC 1358 is confirmed to be a
CT-AGN using physical motivated models, at >3 confidence level. Our
best-fit shows that the column density along the 'line-of-sight' of the
obscuring material surrounding the accreting super-massive black hole is N = [1.96--2.80] 10 cm. The high-quality data from
NuSTAR gives the best constraints on the spectral shape above 10 keV to
date on NGC 1358. Moreover, by combining NuSTAR and XMM-Newton data, we find
that the obscuring torus has a low covering factor ( <0.17), and the
obscuring material is distributed in clumps, rather than uniformly. We also
derive an estimate of NGC 1358's Eddington ratio, finding it to be
10, which is in
acceptable agreement with previous measurements. Finally, we find no evidence
of short-term variability, over a 100 ks time-span, in terms of both
'line-of-sight' column density and flux.Comment: 12 pages, 6 figure
Intrinsic tethering activity of endosomal Rab proteins.
Rab small G proteins control membrane trafficking events required for many processes including secretion, lipid metabolism, antigen presentation and growth factor signaling. Rabs recruit effectors that mediate diverse functions including vesicle tethering and fusion. However, many mechanistic questions about Rab-regulated vesicle tethering are unresolved. Using chemically defined reaction systems, we discovered that Vps21, a Saccharomyces cerevisiae ortholog of mammalian endosomal Rab5, functions in trans with itself and with at least two other endosomal Rabs to directly mediate GTP-dependent tethering. Vps21-mediated tethering was stringently and reversibly regulated by an upstream activator, Vps9, and an inhibitor, Gyp1, which were sufficient to drive dynamic cycles of tethering and detethering. These experiments reveal a previously undescribed mode of tethering by endocytic Rabs. In our working model, the intrinsic tethering capacity Vps21 operates in concert with conventional effectors and SNAREs to drive efficient docking and fusion
Measuring the Sources of the Intergalactic Ionizing Flux
We use a wide-field (0.9 square degree) X-ray sample with optical and GALEX
ultraviolet observations to measure the contribution of Active Galactic Nuclei
(AGNs) to the ionizing flux as a function of redshift. Our analysis shows that
the AGN contribution to the metagalactic ionizing background peaks around z=2.
The measured values of the ionizing background from the AGNs are lower than
previous estimates and confirm that ionization from AGNs is insufficient to
maintain the observed ionization of the intergalactic medium (IGM) at z>3. We
show that only sources with broad lines in their optical spectra have
detectable ionizing flux and that the ionizing flux seen in an AGN is not
correlated with its X-ray color. We also use the GALEX observations of the
GOODS-N region to place a 2-sigma upper limit of 0.008 on the average
ionization fraction fnu(700 A)/fnu(1500 A) for 626 UV selected galaxies in the
redshift range z=0.9-1.4. We then use this limit to estimate an upper bound to
the galaxy contribution in the redshift range z=0-5. If the z~1.15 ionization
fraction is appropriate for higher redshift galaxies, then contributions from
the galaxy population are also too low to account for the IGM ionization at the
highest redshifts (z>4).Comment: 15 pages, Accepted by The Astrophysical Journa
Chandra Observations of Radio-Loud Quasars at z > 4: X-rays from the Radio Beacons of the Early Universe
We present the results of Chandra observations of six radio-loud quasars
(RLQs) and one optically bright radio-quiet quasar (RQQ) at z = 4.1-4.4. These
observations cover a representative sample of RLQs with moderate radio-loudness
(R ~ 40-400), filling the X-ray observational gap between optically selected
RQQs and the five known blazars at z > 4 (R ~ 800-27000). We study the
relationship between X-ray luminosity and radio-loudness for quasars at high
redshift and constrain RLQ X-ray continuum emission and absorption. From a
joint spectral fit of nine moderate-R RLQs observed by Chandra, we find
tentative evidence for absorption above the Galactic N_H, with a best-fit
neutral intrinsic column density of N_H = 2.4^{+2.0}_{-1.8} x 10^{22} cm^{-2},
consistent with earlier claims of increased absorption toward high-redshift
RLQs. We also search for evidence of an enhanced jet-linked component in the
X-ray emission due to the increased energy density of the cosmic microwave
background (CMB) at high redshift, but we find neither spatial detections of
X-ray jets nor a significant enhancement in the X-ray emission relative to
comparable RLQs at low-to-moderate redshifts. Overall, the z ~ 4-5 RLQs have
basic X-ray properties consistent with comparable RLQs in the local universe,
suggesting that the accretion/jet mechanisms of these objects are similar as
well.Comment: 12 pages, The Astronomical Journal, in pres
The obscured X-ray source population in the HELLAS2XMM survey: the Spitzer view
Recent X-ray surveys have provided a large number of high-luminosity,
obscured Active Galactic Nuclei (AGN), the so-called Type 2 quasars. Despite
the large amount of multi-wavelength supporting data, the main parameters
related to the black holes harbored in such AGN are still poorly known. Here we
present the results obtained for a sample of eight Type 2 quasars in the
redshift range 0.9-2.1 selected from the HELLAS2XMM survey, for which we used
Ks-band, Spitzer IRAC and MIPS data at 24 micron to estimate bolometric
corrections, black hole masses, and Eddington ratios.Comment: 6 pages, to appear in "The Multicoloured Landscape of Compact Objects
and their Explosive Progenitors: Theory vs Observations" (Cefalu, Sicily,
June 2006). Eds. L. Burderi et al. (New York: AIP
- …
